首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   350篇
  免费   18篇
  国内免费   11篇
  2024年   1篇
  2023年   6篇
  2021年   6篇
  2020年   5篇
  2019年   8篇
  2018年   11篇
  2017年   18篇
  2016年   7篇
  2015年   19篇
  2014年   24篇
  2013年   24篇
  2012年   14篇
  2011年   23篇
  2010年   10篇
  2009年   25篇
  2008年   31篇
  2007年   29篇
  2006年   31篇
  2005年   10篇
  2004年   14篇
  2003年   16篇
  2002年   13篇
  2001年   4篇
  2000年   4篇
  1999年   4篇
  1998年   1篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   3篇
  1992年   1篇
  1991年   2篇
  1988年   3篇
  1987年   1篇
  1986年   2篇
  1982年   2篇
  1981年   1篇
排序方式: 共有379条查询结果,搜索用时 15 毫秒
1.
2.
The biochemical responses of Holcus lanatus L. to copper and arsenate exposure were investigated in arsenate‐tolerant and ‐non‐tolerant plants from uncontaminated and arsenic/copper‐contaminated sites. Increases in lipid peroxidation, superoxide dismutase (SOD) activity and phytochelatin (PC) production were correlated with increasing copper and arsenate exposure. In addition, significant differences in biochemical responses were observed between arsenate‐tolerant and ‐non‐tolerant plants. Copper and arsenate exposure led to the production of reactive oxygen species, resulting in significant lipid peroxidation in non‐tolerant plants. However, SOD activity was suppressed upon metal exposure, possibly due to interference with metallo‐enzymes. It was concluded that in non‐tolerant plants, rapid arsenate influx resulted in PC production, glutathione depletion and lipid peroxidation. This process would also occur in tolerant plants, but by decreasing the rate of influx, they were able to maintain their constitutive functions, detoxify the metals though PC production and quench reactive oxygen species by SOD activity.  相似文献   
3.
The phytoaccummulation of arsenic by Brassica juncea (L.) was investigated for varying concentrations selected within the range that is evident in Bangladeshi soil. B. juncea (Rai and BARI-11) was grown in the hydroponic media under greenhouse condition with different concentrations (0.5, 1.0, 15, 30, 50 and 100 ppm) of sodium arsenite. Inductively coupled plasma atomic emission spectroscopy (ICP-AES) was used to analyze the data. Mapping of potential area of phytoaccumulation of arsenic by B. juncea was done using Geographic information system (GIS). Arsenic was detected at lower concentrations (0.5 and 1.0 ppm) only at root system of the plant. For higher concentrations (15, 30, and 50 ppm) arsenic was detected both in the root and shoot systems. The results suggested that at 15 and 50 ppm uptake was higher compared to 30 ppm. For 100 ppm of arsenic no plant growth was observed. In Bangladesh, where concentration of arsenic is at lower level and present only at rooting zone, B. juncea may be used for phytoaccumulation of arsenic keeping usual agronomic practices. However, for higher concentrations, B. juncea can be regarded as a good accumulator of arsenic where uptake of arsenic was up to 1% of total biomass of the plant.  相似文献   
4.
ABSTRACT

The southern part of the Tamar valley area in SW England is highly mineralised and mines in the region were the world's principal producers of tin, copper and arsenic during the mid nineteenth century. The Devon Great Consols Mine, covering 67.6 ha (167 acres) is situated in this area. Residues from the mining activity resulted in unvegetated spoil tips and local soils highly contaminated with As (range 120–52600 μg/g As). Sequential chemical extraction procedures were conducted on eight surface samples (0–15 cm) taken from a 2.0 km long transect from within the mine site to agricultural grassland. The proportion of water extractable As in agricultural top soils was lower (0.05–0.3%) than the values obtained for mine wastes (0.02–1.2%). Arsenic was found to be concentrated in the Fe-organic and residual fractions, which accounted for up 93 % of the total As in mine spoil and nearby soils.  相似文献   
5.
The mechanisms that underlie metal carcinogenesis are the subject of intense investigation; however, data from in vitro and in vivo studies are starting to piece together a story that implicates epigenetics as a key player. Data from our lab has shown that nickel compounds inhibit dioxygenase enzymes by displacing iron in the active site. Arsenic is hypothesized to inhibit these enzymes by diminishing ascorbate levels – an important co-factor for dioxygenases. Inhibition of histone demethylase dioxygenases can increase histone methylation levels, which also may affect gene expression. Recently, our lab conducted a series of investigations in human subjects exposed to high levels of nickel or arsenic compounds. Global levels of histone modifications in peripheral blood mononuclear cells (PBMCs) from exposed subjects were compared to low environmentally exposed controls. Results showed that nickel increased H3K4me3 and decreased H3K9me2 globally. Arsenic increased H3K9me2 and decreased H3K9ac globally. Other histone modifications affected by arsenic were sex-dependent. Nickel affected the expression of 2756 genes in human PBMCs and many of the genes were involved in immune and carcinogenic pathways. This review will describe data from our lab that demonstrates for the first time that nickel and arsenic compounds affect global levels of histone modifications and gene expression in exposed human populations.  相似文献   
6.
7.
8.
This article reports the results of a study focused on the presence and bioavailability of arsenic in agricultural soil in the mining and industrial regions of northern Kosovo and southern Serbia, as well as uptake and bioaccumulation of arsenic in two commonly cultivated plant species (Zea mays L. and Solanum tuberosum L.). This area was one of the most important mining districts in Europe. The collected soil samples were subjected to a modified BCR three-step sequential extraction procedure in order to investigate the chemical partitioning of arsenic in the soils. The general distribution of arsenic in various fractions was: exchangeable < reducible < oxidizable fractions. Highest concentrations of total arsenic in soil were found close to industrial facilities and tailing ponds. In addition, fluvisols were significantly more enriched with arsenic than soils at a distance from the river flows. The edible parts of the plant specimen showed different As contents, suggesting that these plant species have different propensities for the uptake and bioaccumulation of arsenic from soil.  相似文献   
9.
As a hazardous environmental metalloid toxicant, arsenic (As)—at elevated levels in water and soil—has created a major public health concern through its entry into the food chain by accumulation in crops. Among the various methods reported thus far for reclamation of As-contaminated crop fields, bioremediation using bacteria with plant-growth-promoting traits has been found to be a most promising solution. There is every possibility that bacterial isolates with the ability to remove or immobilize As could be used for successful bioremediation. However, bioremediation needs to define its boundaries between promise and field application, as most studies have been restricted to laboratory results only. Rhizosphere interactions play a critical role in monitoring As bioavailability to crop plants, thus a better understanding of it might improve rhizoremediation technologies. The challenges rely on the application of these novel approaches under field conditions. Despite some limitations, the prospect for successful stimulation and exploitation of microbial metabolism for As rhizoremediation appears to be very promising.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号