首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6724篇
  免费   373篇
  国内免费   147篇
  2023年   72篇
  2022年   82篇
  2021年   127篇
  2020年   220篇
  2019年   308篇
  2018年   314篇
  2017年   201篇
  2016年   206篇
  2015年   172篇
  2014年   426篇
  2013年   676篇
  2012年   198篇
  2011年   424篇
  2010年   230篇
  2009年   291篇
  2008年   304篇
  2007年   335篇
  2006年   267篇
  2005年   292篇
  2004年   250篇
  2003年   249篇
  2002年   185篇
  2001年   138篇
  2000年   83篇
  1999年   87篇
  1998年   73篇
  1997年   95篇
  1996年   97篇
  1995年   83篇
  1994年   64篇
  1993年   70篇
  1992年   62篇
  1991年   53篇
  1990年   29篇
  1989年   42篇
  1988年   25篇
  1987年   34篇
  1986年   29篇
  1985年   31篇
  1984年   69篇
  1983年   41篇
  1982年   51篇
  1981年   31篇
  1980年   31篇
  1979年   31篇
  1978年   11篇
  1977年   17篇
  1976年   12篇
  1974年   14篇
  1973年   6篇
排序方式: 共有7244条查询结果,搜索用时 15 毫秒
1.
2.
Chemokines are important mediators of cell migration, and thymus and activation-regulated chemokine (TARC/CCL17) and macrophage-derived chemokine (MDC/CCL22) are well-known typical inflammatory chemokines involved in atopic dermatitis (AD). (+)-Nootkatone is the major component of Cyperus rotundus. (+)-Nootkatone has antiallergic, anti-inflammatory, and antiplatelet activities. The purpose of this study was to investigate the effect of (+)-nootkatone on tumor necrosis factor α (TNF-α)/interferon γ (IFN-γ)-induced expression of Th2 chemokines in HaCaT cells. We found that (+)-nootkatone inhibited the TNF-α/IFN-γ-induced expression of TARC/CCL17 and MDC/CCL22 mRNA in HaCaT cells. It also significantly inhibited TNF-α/IFN-γ-induced activation of nuclear factor kappa B (NF-κB), p38 mitogen-activated protein kinase (MAPK), and protein kinase Cζ (PKCζ). Furthermore, we showed that PKCζ and p38 MAPK contributed to the inhibition of TNF-α/IFN-γ-induced TARC/CCL17 and MDC/CCL22 expression by blocking IκBα degradation in HaCaT cells. Taken together, these results suggest that (+)-nootkatone may suppress TNF-α/IFN-γ-induced TARC/CCL17 and MDC/CCL22 expression in HaCaT cells by inhibiting of PKCζ and p38 MAPK signaling pathways that lead to activation of NF-κB. We propose that (+)-nootkatone may be a useful therapeutic candidate for inflammatory skin diseases such as AD.  相似文献   
3.
Although pulsed electromagnetic field (PEMF) exposure has been reported to promote neuronal differentiation, the mechanism is still unclear. Here, we aimed to examine the effects of PEMF exposure on brain-derived neurotrophic factor (Bdnf) mRNA expression and the correlation between the intracellular free calcium concentration ([Ca2+]i) and Bdnf mRNA expression in cultured dorsal root ganglion neurons (DRGNs). Exposure to 50 Hz and 1 mT PEMF for 2 h increased the level of [Ca2+]i and Bdnf mRNA expression, which was found to be mediated by increased [Ca2+]i from Ca2+ influx through L-type voltage-gated calcium channels (VGCCs). However, calcium mobilization was not involved in the increased [Ca2+]i and BDNF expression, indicating that calcium influx was one of the key factors responding to PEMF exposure. Moreover, PD098059, an extracellular signal-regulated kinase (Erk) inhibitor, strongly inhibited PEMF-dependant Erk1/2 activation and BDNF expression, indicating that Erk activation is required for PEMF-induced upregulation of BDNF expression. These findings indicated that PEMF exposure increased BDNF expression in DRGNs by activating Ca2+- and Erk-dependent signaling pathways.  相似文献   
4.
Both c-Met and VEGFR-2 are important targets for the treatment of cancers. In this study, a series of N-(2-phenyl-1H-benzo[d]imidazol-5-yl)quinazolin-4-amine derivatives were designed and identified as dual c-Met and VEGFR-2 inhibitors. Among these compounds bearing quinazoline and benzimidazole fragments, compound 7j exhibited the most potent inhibitory activity against c-Met and VEGFR-2 with IC50 of 0.05 μM and 0.02 μM, respectively. It also showed the highest anticancer activity against the tested cancer cell lines with IC50 of 1.5 μM against MCF-7 and 8.7 μM against Hep-G2. Docking simulation supported the initial pharmacophoric hypothesis and suggested a common mode of interaction at the ATP-binding site of c-Met and VEGFR-2, which demonstrates that compound 7j is a potential agent for cancer therapy deserving further researching.  相似文献   
5.
cDNA coding for N-terminally truncated human annexin I, a member of the family of Ca(2+)-dependent phospholipid binding proteins, has been cloned and expressed in Escherichia coli. The expressed protein is biologically active, and has been purified and crystallized in space group P2(1)2(1)2(1) with cell dimensions a = 139.36 A, b = 67.50 A, and c = 42.11 A. The crystal structure has been determined by molecular replacement at 3.0 A resolution using the annexin V core structure as the search model. The average backbone deviation between these two structures is 2.34 A. The structure has been refined to an R-factor of 17.7% at 2.5 A resolution. Six calcium sites have been identified in the annexin I structure. Each is located in the loop region of the helix-loop-helix motif. Two of the six calcium sites in annexin I are not occupied in the annexin V structure. The superpositions of the corresponding loop regions in the four domains show that the calcium binding loops in annexin I can be divided into two classes: type II and type III. Both classes are different from the well-known EF-hand motif (type I).  相似文献   
6.
In previous papers, the isolation of brain soluble fractions able to modify neuronal Na+, K+-ATPase activity has been described. One of those fractions-peak I-stimulates membrane Na+, K+-ATPase while another-peak II-inhibits this enzyme activity, and has other ouabain-like properties. In the present study, synaptosomal membrane Na+, K+-ATPase was analyzed under several experimental conditions, using ATP orp-nitrophenylphosphate (p-NPP) as substrate, in the absence and presence of cerebral cortex peak II. Peak II inhibited K+-p-NPPase activity in a concentration dependent manner. Double reciprocal plots indicated that peak II uncompetitively inhibits K+-p-NPPase activity regarding substrate, Mg2+ and K+ concentration. Peak II failed to block the known K+-p-NPPase stimulation caused by ATP plus Na+. At various K+ concentrations, percentage K+-p-NPPase inhibition by peak II was similar regardless of the ATP plus Na+ presence, indicating lack of correlation with enzyme phosphorylation. Na+, K+-ATPase activity was decreased by peak II depending on K+ concentration. It is postulated that the inhibitory factor(s) present in peak II interfere(s) with enzyme activation by K+.  相似文献   
7.
On the basis of the strategy of “multifunctional drugs”, a series of novel matrix metalloproteinase inhibitors (MMPIs) containing benzofuroxan scaffold as a nitric oxide donor were designed, synthesized and evaluated. All synthesized compounds, especially 16a, exhibited potent MMP-2,9 inhibitory activities, anti-proliferative activities and could produce high levels of NO in Hela cells. They were also evaluated for both of their anti-invasion and anti-angiogenesis effects. Furthermore, compared with LY52, 16a demonstrated competitive antitumor activity in vivo. These hybrid NO-MMPIs might offer suitable scaffolds to develop valuable MMP inhibitors for the further discovery of novel anti-cancer drugs.  相似文献   
8.
Effective chemotherapy for solid cancers is challenging due to a limitation in permeation that prevents anticancer drugs from reaching the center of the tumor, therefore unable to limit cancer cell growth. To circumvent this issue, we planned to apply the drugs directly at the center by first collapsing the outer structure. For this, we focused on cell–cell communication (CCC) between N-glycans and proteins at the tumor cell surface. Mature N-glycans establish CCC; however, CCC is hindered when numerous immature N-glycans are present at the cell surface. Inhibition of Golgi mannosidases (GMs) results in the transport of immature N-glycans to the cell surface. This can be employed to disrupt CCC. Here, we describe the molecular design and synthesis of an improved GM inhibitor with a non-sugar mimic scaffold that was screened from a compound library. The synthesized compounds were tested for enzyme inhibition ability and inhibition of spheroid formation using cell-based methods. Most of the compounds designed and synthesized exhibited GM inhibition at the cellular level. Of those, AR524 had higher inhibitory activity than a known GM inhibitor, kifunensine. Moreover, AR524 inhibited spheroid formation of human malignant cells at low concentration (10 µM), based on the disruption of CCC by GM inhibition.  相似文献   
9.
Sphingosine kinase inhibitor (SKI) II has been reported as a dual inhibitor of sphingosine kinases (SKs) 1 and 2 and has been extensively used to prove the involvement of SKs and sphingosine-1-phosphate (S1P) in cellular processes. Dihydroceramide desaturase (Des1), the last enzyme in the de novo synthesis of ceramide (Cer), regulates the balance between dihydroceramides (dhCers) and Cers. Both SKs and Des1 have interest as therapeutic targets. Here we show that SKI II is a noncompetitive inhibitor (Ki = 0.3 μM) of Des1 activity with effect also in intact cells without modifying Des1 protein levels. Molecular modeling studies support that the SKI II-induced decrease in Des1 activity could result from inhibition of NADH-cytochrome b5 reductase. SKI II, but not the SK1-specific inhibitor PF-543, provoked a remarkable accumulation of dhCers and their metabolites, while both SKI II and PF-543 reduced S1P to almost undetectable levels. SKI II, but not PF543, reduced cell proliferation with accumulation of cells in the G0/G1 phase. SKI II, but not PF543, induced autophagy. These overall findings should be taken into account when using SKI II as a pharmacological tool, as some of the effects attributed to decreased S1P may actually be caused by augmented dhCers and/or their metabolites.  相似文献   
10.
Cathepsin D (Cath D) is overexpressed and secreted in a number of solid tumors and involved in the progress of tumor invasion, proliferation, metastasis, and apoptosis. Inhibition of Cath D is regarded as an attractive pathway for the development of novel anticancer drugs. Our previous studies revealed that tasiamide B, a cyanobacterial peptide that contained a statine‐like unit, exhibited good inhibition against Cath D and other aspartic proteases. Using this natural product as prototype, we designed and synthesized three new analogs, which bear isophthalic acid fragment at the N‐terminus and isobutyl amine ( 1 ), cyclopropyl amine ( 2 ), or 3‐methoxybenzyl amine ( 3 ) moiety at the C‐terminus. Enzymatic assays revealed that all these three compounds showed moderate‐to‐good inhibition against Cath D, with IC50s of 15, 884, and 353 nM, respectively. Notably, compound 1 showed extreme selectivity for Cath D with 576‐fold over Cath E and 554‐fold over BACE1, which could be a valuable template for the design of highly potent and selective Cath D inhibitors. Additionally, compound 1 showed moderated activity against HeLa cell lines with IC50 of 41.8 μM. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号