首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   147篇
  免费   10篇
  国内免费   11篇
  2022年   1篇
  2021年   2篇
  2020年   11篇
  2019年   2篇
  2018年   5篇
  2017年   6篇
  2016年   4篇
  2015年   4篇
  2014年   3篇
  2013年   17篇
  2012年   6篇
  2011年   7篇
  2010年   8篇
  2009年   10篇
  2008年   8篇
  2007年   6篇
  2006年   7篇
  2005年   5篇
  2004年   14篇
  2003年   3篇
  2001年   4篇
  2000年   7篇
  1999年   2篇
  1998年   1篇
  1997年   4篇
  1996年   3篇
  1995年   1篇
  1994年   3篇
  1993年   4篇
  1992年   2篇
  1989年   1篇
  1985年   1篇
  1984年   1篇
  1982年   2篇
  1980年   1篇
  1979年   1篇
  1974年   1篇
排序方式: 共有168条查询结果,搜索用时 203 毫秒
1.
An understanding of the genetic structure of populations in the wild is essential for long‐term conservation and stewardship in the face of environmental change. Knowledge of the present‐day distribution of genetic lineages (phylogeography) of a species is especially important for organisms that are exploited or utilize habitats that may be jeopardized by human intervention, including climate change. Here, we describe mitochondrial (mtDNA) and nuclear genetic (microsatellite) diversity among three populations of a migratory bird, the greater white‐fronted goose (Anser albifrons), which breeds discontinuously in western and southwestern Alaska and winters in the Pacific Flyway of North America. Significant genetic structure was evident at both marker types. All three populations were differentiated for mtDNA, whereas microsatellite analysis only differentiated geese from the Cook Inlet Basin. In sexual reproducing species, nonrandom mate selection, when occurring in concert with fine‐scale resource partitioning, can lead to phenotypic and genetic divergence as we observed in our study. If mate selection does not occur at the time of reproduction, which is not uncommon in long‐lived organisms, then mechanisms influencing the true availability of potential mates may be obscured, and the degree of genetic and phenotypic diversity may appear incongruous with presumed patterns of gene flow. Previous investigations revealed population‐specific behavioral, temporal, and spatial mechanisms that likely influence the amount of gene flow measured among greater white‐fronted goose populations. The degree of observed genetic structuring aligns well with our current understanding of population differences pertaining to seasonal movements, social structure, pairing behavior, and resource partitioning.  相似文献   
2.
Feeding on farmland by overwintering populations of pink-footed geese ( Anser brachyrhynchus ) conflicts with agricultural interests in Northern Europe. In order to forecast the potential future of this conflict, we used generalized linear models to relate the presence and absence of pink-footed geese to variables describing the contemporary landscape, and predicted their future distributions in relation to two land-use scenarios for the year 2050. One future scenario represented a global, economically orientated world (A1) and the other represented a regional, environmentally concerned world (B2). The probability of goose occurrence increased within cropland and grassland, and could be explained by their proximity to coast, elevation, and the degree of habitat closure. Predictions to future scenarios revealed noticeable shifts in the suitability of goose habitat evident at the local and regional scale in response to future shifts in land use. In particular, as grasslands and croplands give way to unsuitable land-use types (e.g. woody biofuel crops, increased urbanization, and forest) under both future scenarios, our models predicted a decrease in habitat suitability for geese. If coupled with continued goose population expansion, we expect that the agricultural conflict will intensify under the A1 and particularly the B2 scenarios.  相似文献   
3.
4.
通过野外和室内实试检测蝘蜒逃逸行为的影响因子。野外研究显示,蝘蜒可接近距离与隐蔽所间距呈显著正相关。与动物体温和基底温度无关;在开阔生境中,成体和幼体的可接近距离相似.而郁闭生境中成体的可接近距离显著大于幼体。室内试验表明。两性蝘蜒的可接近距离差异显著,繁殖期雌体的可接近距离大于雄体。  相似文献   
5.
We studied diet and habitat use of greater white-fronted geese (Anser albifrons) from autumn through spring on their primary staging and wintering areas in the Pacific Flyway, 1979–1982. There have been few previous studies of resource use and forage quality of wintering greater white-fronted geese in North America, and as a consequence there has been little empirical support for management practices pertaining to habitat conservation of this broadly distributed species. Observations of >2,500 flocks of geese and collections of foraging birds revealed seasonal and geographic variation in resource use reflective of changes in habitat availability, selection, and fluctuating physiological demands. Autumn migrants from Alaska arrived first in the Klamath Basin of California and southern Oregon, where they fed on barley, oats, wheat, and potatoes. Geese migrated from the Klamath Basin into the Central Valley of California in late autumn where they exploited agricultural crops rich in soluble carbohydrates, with geese in the Sacramento Valley feeding almost exclusively on rice and birds on the Sacramento–San Joaquin Delta primarily utilizing corn. White-fronted geese began their northward migration in late winter, and by early spring most had returned to the Klamath Basin where 37% of flocks were found in fields of new growth cultivated and wild grasses. Cereal grains and potatoes ingested by geese were low in protein (7–14%) and high in soluble nutrients (17–47% neutral detergent fiber [NDF]), whereas grasses were low in available energy (47–49% NDF) but high in protein (26–42%). Greater white-fronted geese are generalist herbivores and can exploit a variety of carbohydrate-rich cultivated crops, likely making these geese less susceptible to winter food shortages than prior to the agriculturalization of the North American landscape. However, agricultural landscapes can be extremely dynamic and may be less predictable in the long-term than the historic environments to which geese are adapted. Thus far greater white-fronted geese have proved resilient to changes in land cover in the Pacific Flyway and by altering their migration regime have even been able to adapt to changes in the availability of suitable forage crops. © 2010 The Wildlife Society.  相似文献   
6.
Aims: To determine the antibacterial potential of silver nanoparticles (AgNps) synthesized by tea leaf extract against Vibrio harveyi and its protective effect on juvenile Feneropenaeus indicus. Methods and Results: AgNps were synthesized by a simple procedure using tea leaf extract as the reducing agent. Bacteriological tests were performed in Luria–Bertani medium on solid agar plates and in liquid systems supplemented with V. harveyi against different concentrations of AgNps. AgNps synthesized in the present study were shown to be effective against V. harveyi isolated from F. indicus. The combined results of long‐ and short‐term treatment of AgNps synthesized by tea leaf extract showed a 71% reduction in accumulated mortality. Conclusions: The long‐term administration of AgNps synthesized by tea leaf extracts at the concentration of 10 μg significantly reduced the mortalities in F. indicus from V. harveyi infections. Significance and Impact of the Study: The AgNps synthesized by tea leaf extract may be an alternative to antibiotics in controlling V. harveyi infections.  相似文献   
7.
Breeding indigenous African taurine cattle tolerant to trypanosomosis is a straightforward approach to control costs generated by this disease. A recent study identified quantitative trait loci (QTL) underlying trypanotolerance traits in experimental crosses between tolerant N'Dama and susceptible Boran zebu cattle. As trypanotolerance is thought to result from local adaptation of indigenous cattle breeds, we propose an alternative and complementary approach to study the genetic architecture of this trait, based on the identification of selection signatures within QTL or candidate genes. A panel of 92 microsatellite markers was genotyped on 509 cattle belonging to four West African trypanotolerant taurine breeds and 10 trypanosusceptible European or African cattle breeds. Some of these markers were located within previously identified QTL regions or candidate genes, while others were chosen in regions assumed to be neutral. A detailed analysis of the genetic structure of these different breeds was carried out to confirm a priori grouping of populations based on previous data. Tests based on the comparison of the observed heterozygosities and variances in microsatellite allelic size among trypanotolerant and trypanosusceptible breeds led to the identification of two significantly less variable microsatellite markers. BM4440, one of these two outlier loci, is located within the confidence interval of a previously described QTL underlying a trypanotolerance-related trait.
Detection of selection signatures appears to be a straightforward approach for unravelling the molecular determinism of trypanosomosis pathogenesis. We expect that a whole genome approach will help confirm these results and achieve a higher resolving power.  相似文献   
8.
描述了一件象属( Elephas) 的右上臼齿化石。标本产自查谟紧靠上西瓦立克亚群巨砾岩组( Boulder Conglomerate Formation) 之上的砂质、粉砂质泥岩夹砾石层中,化石地点位于查谟市南10 km,Kharian 村北约500 m 处。根据齿板数、齿脊频率、釉质层厚度、冠高指数、绝对大小和齿长/齿高指数等牙齿形态参数,暂时将之归为 Elephas cf. E. maximus indicus。还简短讨论了象属的地理分布和地质时代。  相似文献   
9.
2019年4至6月,采用定点观察法和样方法研究甘肃盐池湾国家级自然保护区斑头雁(Anser indicus)巢址选择。研究期间共发现斑头雁巢332个,斑头雁在繁殖期有3种营巢生境,即浅水沼泽、湖心小岛以及山崖,其巢址类型有草垛巢、地面巢和山崖裸岩巢3种。浅水沼泽、湖心小岛以及山崖3种营巢生境中窝卵数分别为(4.7±2.7)枚(n=204)、(4.2±1.9)枚(n=108)及(3.1±0.6)枚(n=20),孵化成功率分别为48.65%(n=199)、45.27%(n=148)及24.00%(n=25),繁殖成功率分别为66.67%(n=42)、74.28%(n=35)及36.36%(n=11)。主成分分析显示,影响浅水沼泽生境中斑头雁巢址选择的主要环境因素依次为水源因素、隐蔽因素、干扰因素和食物因素;影响湖心小岛生境中斑头雁巢址选择的主要环境因素依次为隐蔽因素、食物因素、干扰因素;影响山崖生境中斑头雁巢址选择的主要环境因素依次为地形因素、食物及水源因素、干扰因素。本研究表明,斑头雁在不同营巢生境中,巢址选择的最主要环境因素并不相同,主要依赖生境特征及周围环境因素特征。  相似文献   
10.
山鶺鴒繁殖期的领域鸣唱特征分析   总被引:1,自引:0,他引:1  
山(Dendronanthusindicus)为雀形目科的小型鸟类,在杭州地区为夏候鸟。4月中、下旬抵达,5~7月为其繁殖季节。多活动于林地及林间空旷地。主食多种农林害虫[1],为著名的益鸟,但数量很少。以往对其生态学和行为方面的研究也不多。在繁殖初期,山为了占领域,往往站立于屋脊或高树上,头左右顾盼,不时地发出尖细的“zhij敶,zhij敶,…”如拉锯似的鸣声,因而在野外极易识别。1996年5月上旬至6月中旬,我们对栖息于本校园内的山的占区鸣叫行为进行了观察,同时记录其鸣声,对其鸣声的特征进行了分析。并根…  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号