首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   1篇
  2021年   1篇
  2019年   1篇
  2016年   1篇
  2014年   1篇
  2011年   3篇
  2008年   1篇
  2006年   1篇
  2003年   1篇
排序方式: 共有10条查询结果,搜索用时 750 毫秒
1
1.
Nox2 B-loop peptide, Nox2ds, specifically inhibits the NADPH oxidase Nox2   总被引:1,自引:0,他引:1  
In recent years, reactive oxygen species (ROS) derived from the vascular isoforms of NADPH oxidase, Nox1, Nox2, and Nox4, have been implicated in many cardiovascular pathologies. As a result, the selective inhibition of these isoforms is an area of intense current investigation. In this study, we postulated that Nox2ds, a peptidic inhibitor that mimics a sequence in the cytosolic B-loop of Nox2, would inhibit ROS production by the Nox2-, but not the Nox1- and Nox4-oxidase systems. To test our hypothesis, the inhibitory activity of Nox2ds was assessed in cell-free assays using reconstituted systems expressing the Nox2-, canonical or hybrid Nox1-, or Nox4-oxidase. Our findings demonstrate that Nox2ds, but not its scrambled control, potently inhibited superoxide (O2•−) production in the Nox2 cell-free system, as assessed by the cytochrome c assay. Electron paramagnetic resonance confirmed that Nox2ds inhibits O2•− production by Nox2 oxidase. In contrast, Nox2ds did not inhibit ROS production by either Nox1- or Nox4-oxidase. These findings demonstrate that Nox2ds is a selective inhibitor of Nox2-oxidase and support its utility to elucidate the role of Nox2 in organ pathophysiology and its potential as a therapeutic agent.  相似文献   
2.
Agonist stimulation of G protein-coupled receptors causes receptor activation, phosphorylation, beta-arrestin binding and receptor internalization. Angiotensin II (AngII) causes rapid internalization of the AT1 receptors, whereas AngII-bound AT2 receptors do not internalize. Although the activation of the rat AT1A receptor with AngII causes translocation of beta-arrestin2 to the receptor, no association of this molecule with the AT2 receptor can be detected after AngII treatment with confocal microscopy or bioluminescence resonance energy transfer. These data demonstrate that the two subtypes of angiotensin receptors have different mechanisms of regulation.  相似文献   
3.
目的:探讨微小RNA-152(mi R-152)靶向血管紧张素受体(AT1R)对血管紧张素Ⅱ(AngⅡ)诱导的大鼠心肌成纤维细胞增殖及胶原合成的影响。方法:采用1μmol/L AngⅡ刺激体外培养的大鼠心肌成纤维细胞,通过噻唑蓝(MTT)法检测细胞增殖情况,蛋白免疫印迹(Western blot)检测成纤维细胞中胶原蛋白I(Collagen I)、胶原蛋白I(Collagen Ⅲ)以及AT1R蛋白表达的影响,实时荧光定量聚合酶链式反应(qRT-PCR)检测成纤维细胞中mi R-152和AT1R m RNA的表达。在AngⅡ诱导的心肌成纤维细胞中分别转染mi R-152 mimic和mimic control、AT1R si RNA和si RNA control以及共转染mi R-152 mimic和AT1R过表达载体,以同样的方法检测细胞增殖和胶原合成情况。双荧光素酶报告基因实验检测mi R-152和AT1R靶向结合关系。结果:AngⅡ刺激能够促进心肌成纤维细胞增殖,上调成纤维细胞中胶原蛋白Collagen I和Collagen Ⅲ的表达,同时能够抑制mi R-152的表达,促进AT1R m RNA和蛋白的表达。在AngⅡ诱导的心肌成纤维细胞中,过表达mi R-152或沉默AT1R均能够上调细胞增殖活力,促进胶原合成。双荧光素酶报告基因实验检测结果显示AT1R是mi R-152靶基因,mi R-152能够负向调控AT1R的表达。在AngⅡ诱导的心肌成纤维细胞中,同时过表达mi R-152和AT1R能够逆转单独过表达mi R-152导致的细胞增殖抑制作用,回调胶原蛋白Collagen I和Collagen Ⅲ合成抑制作用。结论:mi R-152能够抑制AngⅡ诱导的心肌成纤维细胞增殖和胶原合成,其作用机制可能是通过靶向AT1R的表达实现的。  相似文献   
4.
Angiotensin converting enzyme 2 (ACE2) is a terminal carboxypeptidase, which cleaves single terminal residues from several bioactive peptides such as Angiotensin II (AngII). Many investigations indicated that ACE2 functions in angiotensin system and plays a crucial role in inflammatory lung diseases. However, the mechanism behind the involvement of ACE2 in inflammatory lung disease has not been fully elucidated. In this study, BEAS-2B cells were treated with gradient concentration of AngII and lipopolysaccharide (LPS) to induce inflammatory condition. Quantitative RT-PCR was performed to detect the level of ACE2 and miR-143-3p. Western blotting and immunofluorescence assays were performed to measure the expression of related proteins. The levels of inflammatory cytokines and cell viability were respectively measured by ELISA and CCK-8 kits. And ACE2 activity was detected by corresponding commercial kits. Bioinformatics methods were employed to predict the potential microRNA targeting ACE2, which was then confirmed by dual luciferase reporter assay. The results showed that ACE2 expression and activity were time-dependently decreased in LPS group for the first 12 h, after which this tendency was reversed. AngII addition enhanced these effects, compared with LPS group. Additionally, the lowest ACE2 activity level was found in both LPS and AngII + LPS groups at 6 h. The number of nuclei and the ACE2 expression were decreased in LPS groups at 6 h and further reduced by addition of AngII, detected by immunofluorescence. Moreover, ACE2 was validated to be a direct target of miR-143-3p. Pretreatment of AngII and LPS regulated the activity of ACE2, increased the expression of proinflammatory cytokines and cell apoptosis and regulated the expression of Bax, Bcl-2 and cleaved caspase-3 in BEAS-2B cells, which could be reversed by transfecting miR-143-3p inhibitor. The results collectively suggest that AngII promotes LPS-induced inflammation by regulating miR-143-3p in BEAS-2B cells. Therefore, miR-143-3p is considered a potential molecular target for the treatment of lung inflammation.  相似文献   
5.
Salvianolic acid B (SalB), one of the major bioactive components in Salviamiltiorrhiza, has plenty of cardioprotective effects. The present study was designed to investigate the effect of SalB on angiotensin II (AngII)-induced hypertrophy in neonatal rat cardiomyocytes, and to find out whether or not this effect is attributed to inhibition of poly (ADP-ribose) polymerase-1 (PARP-1), which plays a key role in cardiac hypertrophy. Our results showed that SalB prevented the cardiomyocytes from AngII-induced hypertrophy, associated with attenuation of the mRNA expressions of atrial natriuretic factor and brain natriuretic peptide, and reduction in the cell surface area. SalB inhibited the activity of PARP-1. The inhibitory effect was comparable to that of the PARP-1 inhibitor 3-Aminobenzamide (3-AB). In addition, SalB reversed the depletion of cellular NAD+ induced by AngII. Moreover, overexpression of PARP-1 attenuated the anti-hypertrophic effect of SalB. These observations suggested that SalB prevented the cardiomyocytes from AngII-induced hypertrophy, at least partially through inhibition of PARP-1. Moreover, SalB attenuated the generation of oxidative stress via suppression of NADPH oxidase 2 and 4, which might probably contribute to the inhibition of PARP-1. These present findings may shed new light on the understanding of the cardioprotective effect of SalB.  相似文献   
6.
1-(1-Acetyl-piperidin-4-yl)-3-adamantan-1-yl-urea 14a (AR9281), a potent and selective soluble epoxide hydrolase inhibitor, was recently tested in a phase 2a clinical setting for its effectiveness in reducing blood pressure and improving insulin resistance in pre-diabetic patients. In a mouse model of diet induced obesity, AR9281 attenuated the enhanced glucose excursion following an intraperitoneal glucose tolerance test. AR9281 also attenuated the increase in blood pressure in angiotensin-II-induced hypertension in rats. These effects were dose-dependent and well correlated with inhibition of the sEH activity in whole blood, consistent with a role of sEH in the observed pharmacology in rodents.  相似文献   
7.
Pathological cardiac stimulation by angiotensinII (AngII) can cause left ventricular hypertrophy, a major independent risk factor for heart attack and death. We have previously reported that AngII exerts its hypertrophic effects by usurping the epidermal growth factor (EGF) signalling pathway via metalloprotease-dependent transactivation. However, the EGF-like ligand responsible for AngII-mediated transactivation and cardiac hypertrophy remains to be identified. Using phosphorylated ERK1/2 as a read-out of growth pathway activation and an alkaline phosphatase-tagged Heparin-Binding EGF-like Growth Factor (HB-EGF) reporter construct to examine AngII-mediated liberation, we provide evidence that HB-EGF is the soluble growth factor involved in AngII-induced left ventricular hypertrophy.  相似文献   
8.
Cardiac hypertrophy is a common pathological change accompanying cardiovascular disease. Recently, some evidence indicated that calcium-sensing receptor (CaSR) expressed in the cardiovascular tissue. However, the functional involvement of CaSR in cardiac hypertrophy remains unclear. Previous studies have shown that CaSR caused accumulation of inositol phosphate to increase the release of intracellular calcium. Moreover, Ca2+-dependent phosphatase calcineurin (CaN) played a vital role in the development of cardiac hypertrophy. Therefore, we investigated the expression of CaSR in cardiac hypertrophy-induced by angiotensin II (AngII) and the effects of CaSR activated by GdCl3 on the related signaling transduction pathways. The results showed that AngII induced cardiac hypertrophy and up-regulated the expression of CaSR, meanwhile increased the intracellular calcium concentration ([Ca2+]i) and activated CaN hypertrophic signaling pathway. Compared with AngII alone, the above changes were further obvious when adding GdCl3. But the effects of GdCl3 on the cardiac hypertrophy were attenuated by CsA, a specific inhibitor of CaN. In conclusion, these results suggest that CaSR is involved in cardiac hypertrophy-induced by AngII through CaN pathway in cultured neonatal rat cardiomyocytes.  相似文献   
9.
The discovery of a receptor that binds prorenin and renin in human endothelial and mesangial cells highlights the possible effect of renin-independent prorenin in the resumption of meiosis in oocytes that was postulated in the 1980s.This study aimed to identify the (pro)renin receptor in the ovary and to assess the effect of prorenin on meiotic resumption. The (pro)renin receptor protein was detected in bovine cumulus-oocyte complexes, theca cells, granulosa cells, and in the corpus luteum. Abundant (pro)renin receptor messenger ribonucleic acid (mRNA) was detected in the oocytes and cumulus cells, while prorenin mRNA was identified in the cumulus cells only. Prorenin at concentrations of 10−10, 10−9, and 10−8 M incubated with oocytes co-cultured with follicular hemisections for 15 h caused the resumption of oocyte meiosis. Aliskiren, which inhibits free renin and receptor-bound renin/prorenin, at concentrations of 10−7, 10−5, and 10−3 M blocked this effect (P < 0.05). To determine the involvement of angiotensin II in prorenin-induced meiosis resumption, cumulus-oocyte complexes and follicular hemisections were treated with prorenin and with angiotensin II or saralasin (angiotensin II antagonist). Prorenin induced the resumption of meiosis independently of angiotensin II. Furthermore, cumulus-oocyte complexes cultured with forskolin (200 μM) and treated with prorenin and aliskiren did not exhibit a prorenin-induced resumption of meiosis (P < 0.05). Only the oocytes’ cyclic adenosine monophosphate levels seemed to be regulated by prorenin and/or forskolin treatment after incubation for 6 h. To the best of our knowledge, this is the first study to identify the (pro)renin receptor in ovarian cells and to demonstrate the independent role of prorenin in the resumption of oocyte meiosis in cattle.  相似文献   
10.
Reactive oxygen species (ROS) are involved in numerous physiological and pathophysiological responses. Increasing evidence implicates ROS as signaling molecules involved in the propagation of cellular pathways. The NADPH oxidase (Nox) family of enzymes is a major source of ROS in the cell and has been related to the progression of many diseases and even environmental toxicity. The complexity of this family's effects on cellular processes stems from the fact that there are seven members, each with unique tissue distribution, cellular localization, and expression. Nox proteins also differ in activation mechanisms and the major ROS detected as their product. To add to this complexity, mounting evidence suggests that other cellular oxidases or their products may be involved in Nox regulation. The overall redox and metabolic status of the cell, specifically the mitochondria, also has implications on ROS signaling. Signaling of such molecules as electrophilic fatty acids has an impact on many redox-sensitive pathologies and thus, as anti-inflammatory molecules, contributes to the complexity of ROS regulation. This review is based on the proceedings of a recent international Oxidase Signaling Symposium at the University of Pittsburgh's Vascular Medicine Institute and Department of Pharmacology and Chemical Biology and encompasses further interaction and discussion among the presenters.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号