首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   338篇
  免费   47篇
  国内免费   7篇
  2024年   2篇
  2023年   8篇
  2022年   7篇
  2021年   12篇
  2020年   12篇
  2019年   15篇
  2018年   13篇
  2017年   13篇
  2016年   23篇
  2015年   12篇
  2014年   15篇
  2013年   20篇
  2012年   9篇
  2011年   19篇
  2010年   18篇
  2009年   13篇
  2008年   15篇
  2007年   18篇
  2006年   19篇
  2005年   13篇
  2004年   13篇
  2003年   13篇
  2002年   13篇
  2001年   9篇
  2000年   4篇
  1999年   4篇
  1998年   5篇
  1997年   5篇
  1996年   4篇
  1995年   2篇
  1994年   6篇
  1993年   7篇
  1992年   4篇
  1991年   3篇
  1990年   4篇
  1989年   3篇
  1988年   2篇
  1986年   1篇
  1985年   1篇
  1982年   3篇
  1981年   1篇
  1979年   4篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
排序方式: 共有392条查询结果,搜索用时 15 毫秒
1.
Archival bottom‐mounted audio recorders were deployed in nine different areas of the western Mediterranean Sea, Strait of Gibraltar, and adjacent North Atlantic waters during 2006–2009 to study fin whale (Balaenoptera physalus) seasonal presence and population structure. Analysis of 29,822 recording hours revealed typical long, patterned sequences of 20 Hz notes (here called “song”), back‐beats, 135–140 Hz notes, and downsweeps. Acoustic parameters (internote interval, note duration, frequency range, center and peak frequencies) were statistically compared among songs and song notes recorded in all areas. Fin whale singers producing songs attributable to the northeastern North Atlantic subpopulation were detected crossing the Strait of Gibraltar and wintering in the southwestern Mediterranean Sea (Alboran basin), while songs attributed to the Mediterranean were detected in the northwest Mediterranean basin. These results suggest that the northeastern North Atlantic fin whale distribution extends into the southwest Mediterranean basin, and spatial and temporal overlap may exist between this subpopulation and the Mediterranean subpopulation. This new interpretation of the fin whale population structure in the western Mediterranean Sea has important ecological and conservation implications. The conventionally accepted distribution ranges of northeastern North Atlantic and Mediterranean fin whale subpopulations should be reconsidered in light of the results from this study.  相似文献   
2.
《Developmental cell》2020,52(2):167-182.e7
  1. Download : Download high-res image (182KB)
  2. Download : Download full-size image
  相似文献   
3.
《Autophagy》2013,9(10):1844-1857
High-resolution imaging of autophagy has been used intensively in cell culture studies, but so far it has been difficult to visualize this process in detail in whole animal models. In this study we present a versatile method for high-resolution imaging of microbial infection in zebrafish larvae by injecting pathogens into the tail fin. This allows visualization of autophagic compartments by light and electron microscopy, which makes it possible to correlate images acquired by the 2 techniques. Using this method we have studied the autophagy response against Mycobacterium marinum infection. We show that mycobacteria during the progress of infection are frequently associated with GFP-Lc3-positive vesicles, and that 2 types of GFP-Lc3-positive vesicles were observed. The majority of these vesicles were approximately 1 μm in size and in close vicinity of bacteria, and a smaller number of GFP-Lc3-positive vesicles was larger in size and were observed to contain bacteria. Quantitative data showed that these larger vesicles occurred significantly more in leukocytes than in other cell types, and that approximately 70% of these vesicles were positive for a lysosomal marker. Using electron microscopy, it was found that approximately 5% of intracellular bacteria were present in autophagic vacuoles and that the remaining intracellular bacteria were present in phagosomes, lysosomes, free inside the cytoplasm or occurred as large aggregates. Based on correlation of light and electron microscopy images, it was shown that GFP-Lc3-positive vesicles displayed autophagic morphology. This study provides a new approach for injection of pathogens into the tail fin, which allows combined light and electron microscopy imaging in vivo and opens new research directions for studying autophagy process related to infectious diseases.  相似文献   
4.
The sucking disc of the sharksuckers of the family Echeneidae is one of the most remarkable and most highly modified skeletal structures among vertebrates. We studied the development of the sucking disc based on a series of larval, juvenile, and adult echeneids ranging from 9.3 mm to 175 mm standard length. We revisited the question of the homology of the different skeletal parts that form the disc using an ontogenetic approach. We compared the initial stages of development of the disc with early developmental stages of the spinous dorsal fin in a representative of the morphologically basal percomorph Morone. We demonstrate that the “interneural rays” of echeneids are homologous with the proximal‐middle radials of Morone and other teleosts and that the “intercalary bones” of sharksuckers are homologous with the distal radials of Morone and other teleosts. The “intercalary bones” or distal radials develop a pair of large wing‐like lateral extensions in echeneids, not present in this form in any other teleost. Finally the “pectinated lamellae” are homologous with the fin spines of Morone and other acanthomorphs. The main part of each pectinated lamella is formed by bilateral extensions of the base of the fin spine just above its proximal tip, each of which develops a row of spinous projections, or spinules, along its posterior margin. The number of rows and the number of spinules increase with size, and they become autogenous from the body of the lamellae. We also provide a historical review of previous studies on the homology of the echeneid sucking disc and demonstrate that the most recent hypotheses, published in 2002, 2005 and 2006, are erroneous. J. Morphol. 2012. © 2012 Wiley Periodicals, Inc.  相似文献   
5.
Certain species of urodeles and teleost fish can regenerate their tissues. Zebrafish have become a widely used model to study the spontaneous regeneration of adult tissues, such as the heart1, retina2, spinal cord3, optic nerve4, sensory hair cells5, and fins6.The zebrafish fin is a relatively simple appendage that is easily manipulated to study multiple stages in epimorphic regeneration. Classically, fin regeneration was characterized by three distinct stages: wound healing, blastema formation, and fin outgrowth. After amputating part of the fin, the surrounding epithelium proliferates and migrates over the wound. At 33 °C, this process occurs within six hours post-amputation (hpa, Figure 1B)6,7. Next, underlying cells from different lineages (ex. bone, blood, glia, fibroblast) re-enter the cell cycle to form a proliferative blastema, while the overlying epidermis continues to proliferate (Figure 1D)8. Outgrowth occurs as cells proximal to the blastema re-differentiate into their respective lineages to form new tissue (Figure 1E)8. Depending on the level of the amputation, full regeneration is completed in a week to a month.The expression of a large number of gene families, including wnt, hox, fgf, msx, retinoic acid, shh, notch, bmp, and activin-betaA genes, is up-regulated during specific stages of fin regeneration9-16. However, the roles of these genes and their encoded proteins during regeneration have been difficult to assess, unless a specific inhibitor for the protein exists13, a temperature-sensitive mutant exists or a transgenic animal (either overexpressing the wild-type protein or a dominant-negative protein) was generated7,12. We developed a reverse genetic technique to quickly and easily test the function of any gene during fin regeneration.Morpholino oligonucleotides are widely used to study loss of specific proteins during zebrafish, Xenopus, chick, and mouse development17-19. Morpholinos basepair with a complementary RNA sequence to either block pre-mRNA splicing or mRNA translation. We describe a method to efficiently introduce fluorescein-tagged antisense morpholinos into regenerating zebrafish fins to knockdown expression of the target protein. The morpholino is micro-injected into each blastema of the regenerating zebrafish tail fin and electroporated into the surrounding cells. Fluorescein provides the charge to electroporate the morpholino and to visualize the morpholino in the fin tissue.This protocol permits conditional protein knockdown to examine the role of specific proteins during regenerative fin outgrowth. In the Discussion, we describe how this approach can be adapted to study the role of specific proteins during wound healing or blastema formation, as well as a potential marker of cell migration during blastema formation.  相似文献   
6.
青海湖裸鲤生长特征的研究   总被引:13,自引:1,他引:12  
对2002年5月—2003年7月采自青海湖的1174尾青海湖裸鲤样本年龄进行了耳石鉴定,并依据年龄推算了生长率。青海湖裸鲤体长与体重的关系为:W=0.000174×L2.4990(♀)、W=0.0000402×L2.7538(♂),雌、雄个体生长差异显著。其体长Von Bertalanffy生长方程为:Lt=551.9301(1-e-0.0711(t 0.3044))(♀),Lt=682.8688(1-e-0.0530(t 0.4240))(♂);体重Von Bertalanffy生长方程为:Wt=1237.3431(1-e-0.0711(t 0.3044))2.4990(♀),Wt=2567.3242×(1-e-0.0530(t 0.4240))2.7538(♂)。其雌、雄生长拐点分别为12.57龄和18.67龄。  相似文献   
7.
ObjectivePhosphorous is an essential micronutrient of plants and involved in critical biological functions. In nature, phosphorous is mostly present in immobilized inorganic mineral and in the fixed organic form including phytic acid and phosphoesteric compounds. However, the bioavailability of bound phosphorous could be enhanced by the use of phosphate solubilizing microorganisms such as bacteria and fungi. The phytases are widespread in an environment and have been isolated from different sources comprising bacteria and fungi.MethodologyIn current studies, we show the successful use of gamma rays and EMS (Ethyl Methane Sulphonate) mutagenesis for enhanced activity of phytases in a fungal strain Sporotrichum thermophile.ResultsWe report an improved strain ST2 that could produce a clear halo zone around the colony, up to 24 mm. The maximum enzymatic activity was found of 382 U/mL on pH 5.5. However, the phytase activity was improved to 387 U/ml at 45 °C. We also report that the mutants produced through EMS showed the greater potential for phytase production.ConclusionThe current study highlights the potential of EMS mutagenesis for strain improvement over physical mutagens.  相似文献   
8.
Diachasmimorpha longicaudata is a koinobiont larval parasitoid that is currently used to control fruit flies of the genera Anastrepha, Ceratitis and Bactrocera. In the rearing process, a fraction of the host larvae that are exposed to parasitoids escape from parasitism and develop into viable and fertile flies. This creates the need to eliminate emerging flies before the parasitoids are shipped for release, increasing costs due to additional handling steps. Exposure of fly eggs or larvae to gamma-irradiation before they are parasitised has been used to reproductively sterilise hosts, or even inhibit their emergence. Our aim was to determine whether X-ray radiation applied to Anastrepha fraterculus third instar larvae before they are exposed to parasitoids, inhibits fly emergence in non-parasitised larvae without affecting the performance of the parasitoids that emerge from parasitised larvae. Three X-ray doses: 6250.2 R, 8333.6 R and 10417 R (equivalent to 60, 80 and 100 Gy, respectively) and one γ-ray dose (100 Gy) were tested. Fly emergence decreased with increasing doses of radiation, showing null values for the higher X-ray dose and the dose of 100 Gy. Irradiation showed either no impact or a positive effect on parasitism rate and fecundity. Sex rate was biased towards females in almost every dose. We conclude that the two types of radiation evaluated here were equally effective in suppressing fly emergence with no detrimental effects on the biological quality of the produced parasitoids. X-rays offer an alternative method of irradiation than the conventional radiation source, i.e. γ-rays. These results represent a significant improvement in the development of a biological control programme against A. fraterculus.  相似文献   
9.
The potential to regenerate declines with age in a wide range of organisms. A popular model system to study the mechanisms of regeneration is the fin of teleost fish, which has the ability to fully regrow upon amputation. Here, we used the short‐lived killifish Nothobranchius furzeri to analyse the impact of aging on fin regeneration in more detail. We observed that young fish were able to nearly completely (98%) regenerate their amputated caudal fins within 4 weeks, whereas middle‐aged fish reached 78%, old fish 57% and very old fish 46% of their original fin size. The difference in growth rate between young and old fish was already significant at 3 days post amputation (dpa) and increased with time. We therefore hypothesized that early events are crucial for the age‐related differences in regenerative capacity. Indeed, we could observe a higher percentage of proliferating cells in early regenerating fin tissue of young fish compared with aged fish and larger fractions of apoptotic cells in aged fish. Furthermore, young fish showed peak upregulation of several genes involved in fgf and wnt/β‐catenin signalling at an earlier time point than old fish. Our findings suggest that regenerative processes are initiated earlier and that regeneration overall is more efficient in younger fish.  相似文献   
10.
Near the Kodiak Archipelago, fin (Balaenoptera physalus) and humpback (Megaptera novaeangliae) whales frequently overlap spatially and temporally. The Gulf Apex Predator‐prey study (GAP) investigated the prey use and potential prey partitioning between these sympatric species by combining concurrent analysis of vertical whale distribution with acoustic assessment of pelagic prey. Acoustic backscatter was classified as consistent with either fish or zooplankton. Whale dive depths were determined through suction cup tags. Tagged humpback whales (n = 10) were most often associated with distribution of fish, except when zooplankton density was very high. Associations between the dive depths of tagged fin whales (n = 4) and the vertical distribution of either prey type were less conclusive. However, prey assessment methods did not adequately describe the distribution of copepods, a potentially significant resource for fin whales. Mean dive parameters showed no significant difference between species when compared across all surveys. However, fin whales spent a greater proportion of dive time in the foraging phase than humpbacks, suggesting a possible difference in foraging efficiency between the two. These results suggest that humpback and fin whales may target different prey, with the greatest potential for diet overlap occurring when the density of zooplankton is very high.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号