首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1667篇
  免费   221篇
  国内免费   291篇
  2024年   2篇
  2023年   48篇
  2022年   44篇
  2021年   67篇
  2020年   87篇
  2019年   108篇
  2018年   89篇
  2017年   93篇
  2016年   105篇
  2015年   100篇
  2014年   86篇
  2013年   113篇
  2012年   81篇
  2011年   83篇
  2010年   48篇
  2009年   88篇
  2008年   68篇
  2007年   75篇
  2006年   72篇
  2005年   93篇
  2004年   56篇
  2003年   49篇
  2002年   55篇
  2001年   53篇
  2000年   40篇
  1999年   40篇
  1998年   27篇
  1997年   26篇
  1996年   25篇
  1995年   33篇
  1994年   30篇
  1993年   17篇
  1992年   15篇
  1991年   28篇
  1990年   25篇
  1989年   15篇
  1988年   12篇
  1987年   11篇
  1986年   11篇
  1985年   4篇
  1984年   11篇
  1983年   9篇
  1982年   9篇
  1981年   9篇
  1980年   3篇
  1979年   4篇
  1978年   3篇
  1977年   4篇
  1976年   2篇
  1974年   2篇
排序方式: 共有2179条查询结果,搜索用时 15 毫秒
1.
2.
The distribution of arable weeds extends over regions, where the species occur naturally in different kinds of habitats and regions, where they are mainly limited to arable fields.Here, we present a comparative study on the genetic structure of the arable weed Sherardia arvensis L. comprising populations from Mediterranean grasslands in Southern France and populations from arable fields in Germany. Enhanced by intensified land use since the 1960th, overall population density in Germany is very low compared to the density of populations in Southern France. We tested whether genetic variation within and among populations differ between France and Germany due to different patterns of distribution and land use. Therefore, we analysed 231 individuals of S. arvensis from 24 populations using AFLPs. Based on fragment analysis data we compared spatial genetic structure and genetic variation of populations from the two regions.Genetic variation within populations from the two regions (Shannon Index = 0.13 for both) and genetic variation among populations (26.8% and 30.0% in an analysis of molecular variance) were comparable. In both regions a drift-migration model supported the assumption of gene flow between populations. However, a clear correlation of geographical and genetic distances could only be reported for the indigenous populations from France (r = 0.46; P = 0.02), whereas in Germany a spatial genetic relationship between populations was missing (r = 0.16; P = 0.21).Our study revealed that neither French nor German populations are genetically impoverished. For French populations further the spatial genetic structure suggests that there is current gene flow between populations through pollinators and seed dispersal by cattle. For German populations comparable levels of genetic diversity and gene flow were detected, but gene flow was random. This can be traced back in all likelihood to diffuse dispersal by agriculture and the mechanical reshuffling of the individuals from the soil seed bank.  相似文献   
3.
Abstract. In this study, plant functional types are understood as groups of plants with similar biological traits displaying significant optima or maxima on a gradient plane of resource supply and disturbance intensity. The biological traits refer to expansion, vegetative regeneration, generative reproduction, dispersal and seed bank longevity. 129 vegetation samples were taken in an agricultural landscape in southwestern Germany, covering a wide range of terrestrial vegetation types – but with the exception of forests and wetlands. For each site, also soil data were recorded. Mean daily soil moisture was estimated with a simple model. Soil moisture, balanced nitrogen supply and available phosphorus were combined into a factor ‘resource supply’. In addition, disturbance intensity was estimated for each site. This factor was based on (1) frequency of disturbance, (2) disturbance depth below or above the soil surface, and (3) proportion of the area affected by a discrete disturbance event. 30 plant groups with similar biological characteristics resulted from a cluster analysis, based on a compilation of 19 biological traits for a regional species pool. Logistic regression on a gradient plane of disturbance intensity and resource supply yielded response curves for 28 groups. The dependent variable was defined as the probability of encountering all members of a group in a sample. 17 groups display a significant response curve on the gradient plane. Plants with a potential for long- range dispersal are concentrated on sites with low or high disturbance intensities (e.g. fallow land, fields, lawns). On sites with medium disturbance intensity (e.g. meadows) and low to medium resource supply, small-range dispersal predominates. There are no distinct trends concerning seed bank longevity. The potential for vertical and lateral expansion increases with decreasing disturbance intensity. Only at medium disturbance intensities does vertical expansion correlate positively with resource supply. Rapid detachment of daughter individuals occurs more often on productive sites than on less productive sites. Diversity of groups with similar biological traits is highest on sites with medium disturbance intensities.  相似文献   
4.
Legume N2 fixation is variable, but nonetheless is a valuable process in world agriculture. There is great potential to increase the contribution by the crop legumes to the world's supply of soil.N. This will be achieved by (i) increasing the area of legumes sown by farmers; (ii) improved management of the crops in order that the major determinants of productivity, e.g. land area, water availability, are converted to harvested product with maximum efficiency; and (iii) genetic modification of the commonly-grown species to ensure high dependence of the legume crop on N2 fixation at all levels of productivity. Currently-used methods for measuring N2 fixation and for assessing heritability and repeatability of N2 fixation in breeding and selection programs are reviewed. Results from research programs to define genetic variation in N2 fixation and to enhance N2 fixation through selection and breeding are presented with particular emphasis on common bean (Phaseolus vulgaris) and soybean (Glycine max).  相似文献   
5.
Switchgrass is a large, North American, perennial grass that is being evaluated as a potential energy crop. There is a need to assess genetic diversity in stored accessions and in remaining native stands to assist breeding and conservation efforts. Marker development will also be necessary for genetic linkage mapping. Toward this end, 32 switchgrass genic di‐, tri‐ and tetranucleotide repeat microsatellites were identified from expressed sequence tags (ESTs). These microsatellites were used to screen individuals from two different named cultivars. The markers displayed a high level of polymorphism consistent with the tetraploid, allogamous behaviour of the cultivars tested.  相似文献   
6.
An Environmental Assessment (EA) is one of the steps within the Environmental Impact Assessment process. Birds are often used in EA to help decision makers evaluate potential human impacts from proposed development activities. A “sensitivity to human disturbance” index, created by Parker III et al. (1996) for all Neotropical species, is commonly considered an ecological indicator. However, this parameter was created subjectively and, for most species, there have been no rigorous field test to validate its effectiveness as such. Therefore, in this study, we aim to: (1) evaluate if, at the local scale, birds from forest patches in a human-modified landscape (HML) may differ in sensitivity from Parker's sensitivity classification; (2) evaluate the effectiveness of the species richness value at each sensitivity level as an ecological indicator; (3) gather information on how often and in which manner Parker's classification has been used in EA. To do so, bird sampling was performed in eight forest patches in a HML over one year. Then, we created a local sensitivity to disturbance using information about threat, endemism, spatial distribution and relative abundance of all species in the study area. We found that 37% of the forest birds showed different local sensitivity levels when compared with Parker's classification. Our results show that only the richness of high-sensitivity species from our local classification fitted the ecological indicator assumptions helping the environmental conditions evaluation of the studied patches. We conclude that species richness of each Parker's bird sensitivity levels do not necessarily perform as an ecological indicator at the local scale, and particularly in HML. Nevertheless, Parker's Neotropical bird sensitivity classification was used in 50% of EA we reviewed. In these, 76% assumed that it was an accurate ecological indicator of the local forest conditions for birds. The lack of clear criteria used in Parker's classification allows diverse interpretations by ornithologists, and there is no agreement about the ecological meaning of each sensitivity level and what environmental conditions each level may indicate of. Therefore, the use of Parker's classification in EA may jeopardize accurate interpretations of proposed anthropogenic impacts. Furthermore, because a bird species’ sensitivity often varies between locations, we argue that Parker's generalized classification of bird sensitivity should not be used as an indicator of forest environmental conditions in EA throughout HMLs in Neotropics. Rather, local bird ecological indices should be explored, otherwise, erroneous predictions of the anthropogenic impacts will continue to be common.  相似文献   
7.
Species richness in the alpine zone varies dramatically when communities are compared. We explored (i) which stress and disturbance factors were highly correlated with species richness, (ii) whether the intermediate stress hypothesis (ISH) and the intermediate disturbance hypothesis (IDH) can be applied to alpine ecosystems, and (iii) whether standing crop can be used as an easily measurable surrogate for causal factors determining species richness in the alpine zone. Species numbers and standing crop were determined in 14 alpine plant communities in the Swiss Alps. To quantify the stress and disturbance factors in each community, air temperature, relative air humidity, wind speed, global radiation, UV-B radiation, length of the growing season, soil suction, pH, main soil nutrients, waterlogging, soil movement, number of avalanches, level of denudation, winter dieback, herbivory, wind damage, and days with frost were measured or observed. The present study revealed that 82% of the variance in␣vascular species richness among sites could be explained by just two abiotic factors, daily maximum temperature and soil pH. Daily maximum temperature and pH affect species richness both directly and via their effects on other environmental variables. Some stress and disturbance factors were related to species richness in a monotonic way, others in an unimodal way. Monotonic relationships suggest that the harsher the environment is, the fewer species can survive in such habitats. In cases of unimodal relationships (ISH and IDH) species richness decreases at both ends of the gradients due to the harsh environment and/or the interaction of other environmental factors. Competition and disturbance seemed only to play a secondary role in the form of fine-tuning species richness in specific communities. Thus, we concluded that neither the ISH nor the IDH can be considered useful conceptual models for the alpine zone. Furthermore, we found that standing crop can be used as an easily measurable surrogate for causal factors determining species richness in the alpine zone, even though there is no direct causality.  相似文献   
8.
Alsaeedi  A.H.  Elprince  A.M. 《Plant and Soil》1999,208(1):73-86
Accurate prediction of the leaching requirements (Lr) of crops and striving to attain them is essential for efficient irrigation water use. Solute modeling was extended to develop four Lr conceptual models that do not neglect solute reactions in the root-zone, surface evaporation, and the influence of immobile wetted pore space. The models were based on: (i) the water movement equation which included an exponential water-uptake function (-e) or the 40-30-20-10 water-uptake function (-4); (ii) the solute movement equation for a reactive salt of a linear reaction term (the Lrchem-e and Lrchem-4 models); or the employment of output (salinity of soil solution, EC vs concentration factor, CF) of the SAO comprehensive chemical model (the LrSAO-e and LrSAO-4 models); and (iii) the inclusion of an effective soil solution volume in the transport equations. The root-zone average relative effective soil solution volume νeff (L | L50, p) was of sigmoidal response to leaching fraction (L) with two adjustable parameters L50 and p; the root-zone average reduced retention coefficient decreased linearly with L; and salt concentration at soil surface was related to salt concentration of irrigation water (ECi) by the fraction of irrigation water that evaporated (∈). The resulted concentration profiles indicated the salt behaved as a conservative one down to a threshold depth (xs) below of which salt was retained and precipitated. The depth of the conservative-salt front, xs increased with L and the 40-30-20-10 water-uptake pattern overestimated the xs depth relative to the exponential pattern. Concentration profiles were integrated to compute the root-zone average salinity, which was converted to crop salt-tolerance threshold (AE). The four conceptual models were successfully calibrated using experimental AE/ECi vs. Lr data with the input parameter values: ς = 0.27, p = 1.44, L50 = 0.16, ω = 2, and ∈ = 0 or 0.1 for the exponential or the 40-30-20-10 pattern, respectively; where ς is relative root length parameter and ω is a weighing parameter. No significant difference existed between the four model correlations at the 0.05 level. The four models require ECi and AE of the crop as input for Lr prediction. Sensitivity analysis revealed predicted Lr was sensitive the least to error in ∈. For tolerant and moderately tolerant crops Lr was sensitive the most to ς, and for sensitive crops to L50 and p. Model verification and validation were discussed. In deriving the present Lr models, no osmotic adjustment was required and both the exponential and the 40-30-20-10 water uptake patterns were, equivalently, applicable. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
9.
Net productivity of vegetation is determined by the product of the efficiencies with which it intercepts light (?i) and converts that intercepted energy into biomass (?c). Elevated carbon dioxide (CO2) increases photosynthesis and leaf area index (LAI) of soybeans and thus may increase ?i and ?c; elevated O3 may have the opposite effect. Knowing if elevated CO2 and O3 differentially affect physiological more than structural components of the ecosystem may reveal how these elements of global change will ultimately alter productivity. The effects of elevated CO2 and O3 on an intact soybean ecosystem were examined with Soybean Free Air Concentration Enrichment (SoyFACE) technology where large field plots (20‐m diameter) were exposed to elevated CO2 (~550 μmol mol?1) and elevated O3 (1.2 × ambient) in a factorial design. Aboveground biomass, LAI and light interception were measured during the growing seasons of 2002, 2003 and 2004 to calculate ?i and ?c. A 15% increase in yield (averaged over 3 years) under elevated CO2 was caused primarily by a 12% stimulation in ?c , as ?i increased by only 3%. Though accelerated canopy senescence under elevated O3 caused a 3% decrease in ?i, the primary effect of O3 on biomass was through an 11% reduction in ?c. When CO2 and O3 were elevated in combination, CO2 partially reduced the negative effects of elevated O3. Knowing that changes in productivity in elevated CO2 and O3 were influenced strongly by the efficiency of conversion of light energy into energy in plant biomass will aid in optimizing soybean yields in the future. Future modeling efforts that rely on ?c for calculating regional and global plant productivity will need to accommodate the effects of global change on this important ecosystem attribute.  相似文献   
10.
Abstract.  1. The survival, growth and fecundity of bumblebee colonies are affected by the availability of food resources and presence of natural enemies. Social parasites (cuckoo bumblebees and other bumblebees) can invade colonies and reduce or halt successful reproduction; however, little is known about the frequency of invasion or what environmental factors determine their success in the field.
2. We used 48 experimental colonies of the bumblebee Bombus terrestris , and manipulated both resource availability at the landscape scale and date of colony founding, to explore invasion rates of social parasites and their effect on the performance of host colonies.
3. Proximity to abundant forage resources (fields of flowering oilseed rape) and early colony founding significantly increased the probability of parasite invasion and thus offset the potential positive effects of these factors on bumblebee colony performance.
4. The study concludes that optimal colony location may be among intermediate levels of resources and supports schemes designed to increase the heterogeneity of forage resources for bumblebees across agricultural landscapes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号