首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   1篇
  国内免费   2篇
  2023年   2篇
  2022年   5篇
  2021年   2篇
  2020年   3篇
  2019年   7篇
  2018年   3篇
  2017年   2篇
  2014年   2篇
  2013年   4篇
  2012年   1篇
  2011年   2篇
  2010年   2篇
  2002年   1篇
排序方式: 共有36条查询结果,搜索用时 15 毫秒
1.
Cellular biomolecular complexes including protein–protein, protein–RNA, and protein–DNA interactions regulate and execute most biological functions. In particular in brain, protein–protein interactions (PPIs) mediate or regulate virtually all nerve cell functions, such as neurotransmission, cell–cell communication, neurogenesis, synaptogenesis, and synaptic plasticity. Perturbations of PPIs in specific subsets of neurons and glia are thought to underly a majority of neurobiological disorders. Therefore, understanding biological functions at a cellular level requires a reasonably complete catalog of all physical interactions between proteins. An enzyme-catalyzed method to biotinylate proximal interacting proteins within 10 to 300 nm of each other is being increasingly used to characterize the spatiotemporal features of complex PPIs in brain. Thus, proximity labeling has emerged recently as a powerful tool to identify proteomes in distinct cell types in brain as well as proteomes and PPIs in structures difficult to isolate, such as the synaptic cleft, axonal projections, or astrocyte–neuron junctions. In this review, we summarize recent advances in proximity labeling methods and their application to neurobiology.  相似文献   
2.
3.
4.
Increasing numbers of cancer patients survive and live longer than five years after therapy, but very often side effects of cancer treatment arise at same time. One of the side effects, chemotherapy-induced cognitive impairment (CICI), also called “chemobrain” or “chemofog” by patients, brings enormous challenges to cancer survivors following successful chemotherapeutic treatment. Decreased abilities of learning, memory, attention, executive function and processing speed in cancer survivors with CICI, are some of the challenges that greatly impair survivors' quality of life. The molecular mechanisms of CICI involve very complicated processes, which have been the subject of investigation over the past decades. Many mechanistic candidates have been studied including disruption of the blood-brain barrier (BBB), DNA damage, telomere shortening, oxidative stress and associated inflammatory response, gene polymorphism of neural repair, altered neurotransmission, and hormone changes. Oxidative stress is considered as a vital mechanism, since over 50% of FDA-approved anti-cancer drugs can generate reactive oxygen species (ROS) or reactive nitrogen species (RNS), which lead to neuronal death. In this review paper, we discuss these important candidate mechanisms, in particular oxidative stress and the cytokine, TNF-alpha and their potential roles in CICI.  相似文献   
5.
Understanding of BRCA1/2 interaction with the base excision repair (BER) pathway could improve therapy based on ‘synthetic lethality'', whose effectiveness is based on homologous recombination deficiency in cells lacking functional BRCA genes. However, poly (ADP-ribose) polymerase (PARP) inhibitors failed in some patients and for this reason we explored BER key enzyme expression. In this study, the expression of BER enzymes (redox factor 1/apurinic-apyrimidinic endonuclease 1 (REF1/APEX1), NTH endonuclease III-like 1 (NTHL1), 8-oxoguanine DNA glycosylase (OGG1), PARP1) and of the scaffold protein XRCC1 (X-ray repair complementing defective repair in Chinese hamster cells 1) were investigated in familial (BRCA-related and not) and sporadic breast cancer cases. Furthermore, miR17 expression was measured because of its role in the epigenetic regulation of BRCA1. Gene expression was evaluated in BRCA1-mutated cell lines, SUM149PT and SUM1315MO2, and in a BRCA1-proficient triple-negative MDA-MB-231 cell line. A cohort of 27 familial and 16 sporadic breast cancer patients was then examined to confirm results obtained from the cell line model. APEX1/REF1 was found to be upregulated in familial BRCA-wild-type and sporadic cases, indicating this enzyme as a potential therapeutic target. Furthermore, XRCC1 was overexpressed in BRCAX patients; consequently, we suggest to test the effectiveness of inhibitors targeting two different BER components in preclinical studies. XRCC1, which is also involved in the non-homologous end-joining pathway, was found to be downregulated in BRCA2-related patients concurrently with no change in PARP1 expression. Interestingly, no difference in PARP1 and miR17 expression was found in BRCA-related and sporadic breast cancer cases. PARP1 and miR17 could therefore be further investigated as molecular biomarkers of ‘BRCAness'' phenotype, indicating patients which could really benefit from PARP inhibitor therapies.  相似文献   
6.
7.
8.
《Current biology : CB》2020,30(14):2791-2804.e6
  1. Download : Download high-res image (144KB)
  2. Download : Download full-size image
  相似文献   
9.
APEX2, an engineered ascorbate peroxidase for high activity, is a powerful tool for proximity labeling applications. Owing to its lack of disulfides and the calcium‐independent activity, APEX2 can be applied intracellularly for targeted electron microscopy imaging or interactome mapping when fusing to a protein of interest. However, APEX2 fusion is often deleterious to the protein expression, which seriously hampers its wide utility. This problem is especially compelling when APEX2 is fused to structurally delicate proteins, such as multi‐pass membrane proteins. In this study, we found that a cysteine‐free single mutant C32S of APEX2 dramatically improved the expression of fusion proteins in mammalian cells without compromising the enzyme activity. We fused APEX2 and APEX2C32S to four multi‐transmembrane solute carriers (SLCs), SLC1A5, SLC6A5, SLC6A14, and SLC7A1, and compared their expressions in stable HEK293T cell lines. Except the SLC6A5 fusions expressing at decent levels for both APEX2 (70%) and APEX2C32S (73%), other three SLC proteins showed significantly better expression when fusing to APEX2C32S (69 ± 13%) than APEX2 (29 ± 15%). Immunofluorescence and western blot experiments showed correct plasma membrane localization and strong proximity labeling efficiency in all four SLC‐APEX2C32S cells. Enzyme kinetic experiments revealed that APEX2 and APEX2C32S have comparable activities in terms of oxidizing guaiacol. Overall, we believe APEX2C32S is a superior fusion tag to APEX2 for proximity labeling applications, especially when mismatched disulfide bonding or poor expression is a concern.  相似文献   
10.

Background

Glioblastoma is the most common and aggressive primary brain tumor in adults. Despite several factors such as ionizing radiation exposure or rare genetic syndromes have been associated with the development of glioblastoma, no underlying cause has been identified for the majority of cases. We thus aimed to investigate the role of DNA repair polymorphisms in modulating glioblastoma risk.

Methods

Genotypic and allelic frequencies of seven common polymorphisms in DNA repair genes involved in nucleotide excision repair (ERCC1 rs11615, ERCC2 rs13181, ERCC6 rs4253079), base excision repair (APEX1 rs1130409, XRCC1 rs25487), double-strand break repair (XRCC3 rs861539) and mismatch repair (MLH1 rs1800734) pathways were analyzed in 115 glioblastoma patients and 200 healthy controls. Haplotype analysis was also performed for ERCC1 rs11615 and ERCC2 rs13181 polymorphisms, located on the same chromosomal region (19q13.32).

Results

Our results indicated that carriers of the ERCC2 Gln/Gln genotype were associated with a lower glioblastoma risk (OR = 0.32, 95% CI 0.12–0.89; P = 0.028), whereas carriers of the MLH1 AA genotype were associated with an increased risk of glioblastoma (OR = 3.14, 95% CI 1.09–9.06; P = 0.034). Furthermore, the haplotype containing the C allele of ERCC2 rs13181 polymorphism and the T allele of ERCC1 rs11615 polymorphism was significantly associated with a protective effect of developing glioblastoma (OR = 0.34, 95% CI 0.16–0.71; P = 0.004).

Conclusions

These results pointed out that MLH1 rs1800734 and ERCC2 rs13181 polymorphisms might constitute glioblastoma susceptibility factors, and also suggested that the chromosomal region 19q could be important in glioblastoma pathogenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号