首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3339篇
  免费   373篇
  国内免费   189篇
  2024年   4篇
  2023年   42篇
  2022年   35篇
  2021年   93篇
  2020年   120篇
  2019年   166篇
  2018年   167篇
  2017年   135篇
  2016年   116篇
  2015年   141篇
  2014年   220篇
  2013年   266篇
  2012年   205篇
  2011年   206篇
  2010年   135篇
  2009年   167篇
  2008年   146篇
  2007年   156篇
  2006年   136篇
  2005年   128篇
  2004年   107篇
  2003年   97篇
  2002年   103篇
  2001年   85篇
  2000年   78篇
  1999年   53篇
  1998年   59篇
  1997年   62篇
  1996年   62篇
  1995年   47篇
  1994年   31篇
  1993年   34篇
  1992年   39篇
  1991年   31篇
  1990年   22篇
  1989年   16篇
  1988年   24篇
  1987年   17篇
  1986年   18篇
  1985年   29篇
  1984年   16篇
  1983年   12篇
  1982年   19篇
  1981年   17篇
  1980年   9篇
  1979年   6篇
  1978年   6篇
  1977年   6篇
  1976年   3篇
  1972年   2篇
排序方式: 共有3901条查询结果,搜索用时 15 毫秒
1.
Whole-plant ABA flux and the regulation of water loss in Cedrella odorata   总被引:2,自引:0,他引:2  
Three-month-old Cedrella odorata seedlings were exposed to a soil-drying treatment. During this period, xylem sap was periodically collected from the plant by applying pneumatic pressure to the roots. This also allowed whole-plant water status to be measured by recording the balancing pressure applied. The concentration of ABA in xylem sap (C) was related to the whole-plant transpiration rate (V) which was measured with a sap flow gauge. The analysis of these paired measurements centred on how the reciprocal of C (R) varied with respect to V. This revealed that (1) the observed increases in C could not be explained by the reductions in V alone, (2) initially, decreases in V were associated with proportional increases in the whole-plant ABA flux (M), and (3) this relationship broke down at low values of V since zero flow was associated with a finite value for C estimated to be 41 pmol ABA mmol?1 H2O. A simple static model is developed from the observations that is able to explain the data well, and the results are discussed in terms of the effects of ABA on stomatal conductance (gsw).  相似文献   
2.
A cancer microenvironment generates strong hydrogen bond network system by the positive feedback loops supporting cancer complexity and robustness. Such network functions through the AKT locus generating high entropic energy supporting cancer metastatic robustness. Charged lepton particle muon follows the rule of Bragg effect during a collision with hydrogen network in cancer cells. Muon beam dismantles hydrogen bond network in cancer by the muon-catalyzed fusion, leading to apoptosis of cancer cells. Muon induces cumulative energy appearance on the hydrogen bond network in a cancer cell with its fast decay to an electron and two neutrinos. Thus, muon beam, muonic atom, muon neutrino shower, and electrons simultaneously cause fast neutralization of the AKT hydrogen bond network by the conversion of hydrogen into deuterium or helium, inactivating the hydrogen bond networks and inducing failure of cancer complexity and robustness with the disappearance of a malignant phenotype.  相似文献   
3.
4.
The endoplasmic reticulum is the main intracellular Ca2+ store for Ca2+ release during cell signaling. There are different strategies to avoid ER Ca2+ depletion. Release channels utilize first Ca2+-bound to proteins and this minimizes the reduction of the free luminal [Ca2+]. However, if release channels stay open after exhaustion of Ca2+-bound to proteins, then the reduction of the free luminal ER [Ca2+] (via STIM proteins) activates Ca2+ entry at the plasma membrane to restore the ER Ca2+ load, which will work provided that SERCA pump is active. Nevertheless, there are several noxious conditions that result in decreased activity of the SERCA pump such as oxidative stress, inflammatory cytokines, and saturated fatty acids, among others. These conditions result in a deficient restoration of the ER [Ca2+] and lead to the ER stress response that should facilitate recovery of the ER. However, if the stressful condition persists then ER stress ends up triggering cell death and the ensuing degenerative process leads to diverse pathologies; particularly insulin resistance, diabetes and several of the complications associated with diabetes. This scenario suggests that limiting ER stress should decrease the incidence of diabetes and the mobility and mortality associated with this illness.  相似文献   
5.
6.
采用TUNEL染色及免疫组织化学技术对光化学法脑缺血后细胞凋亡及其相关基因bcl-2表达的变化进行了研究。结果发现,缺血后12h,损伤侧皮层缺血区内凋亡细胞数及bcl-2免疫反应阳性细胞数明显增加,一直持续至缺血后72h;并呈现下列时程变化:在缺血后3h每张切片上几乎无凋亡细胞出现,以后逐渐增加,缺血后12h达到峰值,缺血后24h和缺血后72h逐渐减少,但仍高于假手术组水平。凋亡相关基因bcl-2的表达在缺血后3h以前不明显,缺血后12h逐渐增加,缺血后24h最多,以后逐渐下降。上述结果提示,缺血后凋亡细胞的时程变化可能与缺血后梗塞灶的发生和发展有关,而bcl-2表达的变化可能与抑制细胞凋亡、发挥内源性细胞保护作用有关。  相似文献   
7.
8.
The inhibitory effects of PEG on whole-plant growth can exceed the effects of other osmolytes such as NaCI, and this has been ascribed to toxic contaminants, or to reduced oxygen availability in PEG solutions. We investigated another possibility, namely that PEG has an additional inhibitory effect on root water transport which in turn affects leaf development. The effects on first-leaf growth of applications of PEG 6000 or isoosmotic NaCI to the roots were determined using hydroponically grown maize (Zea mays L.) seedlings. Leaf growth rates were inhibited within minutes of PEG application to the roots and remained inhibited for days. The inhibitory effects on growth of NaCI, and also of KCl and mannitol, were much smaller. The comparative effects of NaCI and PEG on root water transport were determined by assaying pressurized flow through excised roots. PEG induced a 7-fold greater inhibition of flow through live roots than NaCI. Killing of the roots by heat treatment, to reduce cell membrane resistances to solute penetration, nearly doubled the flow rate for roots in NaCI, but not for roots in PEG. We suggest that the greater viscosity of PEG solutions, as compared with NaCI, may be a primary factor contributing to the additional inhibition of water flow through live and killed roots. PEG did not have additional effects on leaf turgor but had a 3 times greater inhibitory effect than NaCI on the irreversible extensibility of the leaves and induced 16 times more leaf accumulation of the growth inhibitory stress hormone abscisic acid (ABA). We conclude that greater inhibition of root water transport by PEG 6000, as compared with NaCI, leads to additional reductions in extensibility, additional ABA accumulation, and a greater inhibition of leaf growth.  相似文献   
9.
Tau is an intrinsically disordered protein implicated in many neurodegenerative diseases. The repeat domain fragment of tau, tau-K18, is known to undergo a disorder to order transition in the presence of lipid micelles and vesicles, in which helices form in each of the repeat domains. Here, the mechanism of helical structure formation, induced by a phospholipid mimetic, sodium dodecyl sulfate (SDS) at sub-micellar concentrations, has been studied using multiple biophysical probes. A study of the conformational dynamics of the disordered state, using photoinduced electron transfer coupled to fluorescence correlation spectroscopy (PET-FCS) has indicated the presence of an intermediate state, I, in equilibrium with the unfolded state, U. The cooperative binding of the ligand (L), SDS, to I has been shown to induce the formation of a compact, helical intermediate (IL5) within the dead time (∼37 µs) of a continuous flow mixer. Quantitative analysis of the PET-FCS data and the ensemble microsecond kinetic data, suggests that the mechanism of induction of helical structure can be described by a U ↔ I ↔ IL5 ↔ FL5 mechanism, in which the final helical state, FL5, forms from IL5 with a time constant of 50–200 µs. Finally, it has been shown that the helical conformation is an aggregation-competent state that can directly form amyloid fibrils.  相似文献   
10.
Although important factors governing the meiosis have been reported in the embryonic ovary, meiosis in postnatal testis remains poorly understood. Herein, we first report that SRY‐box 30 (Sox30) is an age‐related and essential regulator of meiosis in the postnatal testis. Sox30‐null mice exhibited uniquely impaired testis, presenting the abnormal arrest of germ‐cell differentiation and irregular Leydig cell proliferation. In aged Sox30‐null mice, the observed testicular impairments were more severe. Furthermore, the germ‐cell arrest occurred at the stage of meiotic zygotene spermatocytes, which is strongly associated with critical regulators of meiosis (such as Cyp26b1, Stra8 and Rec8) and sex differentiation (such as Rspo1, Foxl2, Sox9, Wnt4 and Ctnnb1). Mechanistically, Sox30 can activate Stra8 and Rec8, and inhibit Cyp26b1 and Ctnnb1 by direct binding to their promoters. A different Sox30 domain required for regulating the activity of these gene promoters, providing a “fail‐safe” mechanism for Sox30 to facilitate germ‐cell differentiation. Indeed, retinoic acid levels were reduced owing to increased degradation following the elevation of Cyp26b1 in Sox30‐null testes. Re‐expression of Sox30 in Sox30‐null mice successfully restored germ‐cell meiosis, differentiation and Leydig cell proliferation. Moreover, the restoration of actual fertility appeared to improve over time. Consistently, Rec8 and Stra8 were reactivated, and Cyp26b1 and Ctnnb1 were reinhibited in the restored testes. In summary, Sox30 is necessary, sufficient and age‐associated for germ‐cell meiosis and differentiation in testes by direct regulating critical regulators. This study advances our understanding of the regulation of germ‐cell meiosis and differentiation in the postnatal testis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号