首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51256篇
  免费   3268篇
  国内免费   1873篇
  2023年   841篇
  2022年   796篇
  2021年   1353篇
  2020年   1615篇
  2019年   2146篇
  2018年   1805篇
  2017年   1287篇
  2016年   1317篇
  2015年   1478篇
  2014年   2713篇
  2013年   3524篇
  2012年   2051篇
  2011年   2734篇
  2010年   2776篇
  2009年   2336篇
  2008年   2376篇
  2007年   2614篇
  2006年   2248篇
  2005年   2154篇
  2004年   2060篇
  2003年   1653篇
  2002年   1311篇
  2001年   1002篇
  2000年   774篇
  1999年   831篇
  1998年   738篇
  1997年   636篇
  1996年   664篇
  1995年   708篇
  1994年   657篇
  1993年   611篇
  1992年   574篇
  1991年   493篇
  1990年   416篇
  1989年   381篇
  1988年   371篇
  1987年   320篇
  1986年   329篇
  1985年   377篇
  1984年   478篇
  1983年   340篇
  1982年   422篇
  1981年   336篇
  1980年   342篇
  1979年   296篇
  1978年   240篇
  1977年   198篇
  1976年   172篇
  1975年   124篇
  1974年   129篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
2.
Human mast cells (MCs) contain TG-rich cytoplasmic lipid droplets (LDs) with high arachidonic acid (AA) content. Here, we investigated the functional role of adipose TG lipase (ATGL) in TG hydrolysis and the ensuing release of AA as substrate for eicosanoid generation by activated human primary MCs in culture. Silencing of ATGL in MCs by siRNAs induced the accumulation of neutral lipids in LDs. IgE-dependent activation of MCs triggered the secretion of the two major eicosanoids, prostaglandin D2 (PGD2) and leukotriene C4 (LTC4). The immediate release of PGD2 from the activated MCs was solely dependent on cyclooxygenase (COX) 1, while during the delayed phase of lipid mediator production, the inducible COX-2 also contributed to its release. Importantly, when ATGL-silenced MCs were activated, the secretion of both PGD2 and LTC4 was significantly reduced. Interestingly, the inhibitory effect on the release of LTC4 was even more pronounced in ATGL-silenced MCs than in cytosolic phospholipase A2-silenced MCs. These data show that ATGL hydrolyzes AA-containing TGs present in human MC LDs and define ATGL as a novel regulator of the substrate availability of AA for eicosanoid generation upon MC activation.  相似文献   
3.
Toxocariasis is a soil-transmitted helminthozoonosis due to infection of humans by larvae of Toxocara canis. The disease could produce cognitive and behavioral disturbances especially in children. Meanwhile, in our modern era, the incidence of immunosuppression has been progressively increasing due to increased incidence of malignancy as well as increased use of immunosuppressive agents. The present study aimed at comparing some of the pathological and immunological alterations in the brain of normal and immunosuppressed mice experimentally infected with T. canis. Therefore, 180 Swiss albino mice were divided into 4 groups including normal (control) group, immunocompetent T. canis-infected group, immunosuppressed group (control), and immunosuppressed infected group. Infected mice were subjected to larval counts in the brain, and the brains from all mice were assessed for histopathological changes, astrogliosis, and IL-5 mRNA expression levels in brain tissues. The results showed that under immunosuppression, there were significant increase in brain larval counts, significant enhancement of reactive gliosis, and significant reduction in IL-5 mRNA expression. All these changes were maximal in the chronic stage of infection. In conclusion, the immunopathological alterations in the brains of infected animals were progressive over time, and were exaggerated under the effect of immunosuppression as did the intensity of cerebral infection.  相似文献   
4.
5.
The actin cortex is a thin layer of actin, myosin and actin-binding proteins that underlies the membrane of most animal cells. It is highly dynamic and can undergo remodelling on timescales of tens of seconds, thanks to protein turnover and myosin-mediated contractions. The cortex enables cells to resist external mechanical stresses, controls cell shape and allows cells to exert forces on their neighbours. Thus, its mechanical properties are the key to its physiological function. Here, we give an overview of how cortex composition, structure and dynamics control cortex mechanics and cell shape. We use mitosis as an example to illustrate how global and local regulation of cortex mechanics gives rise to a complex series of cell shape changes.  相似文献   
6.
7.
8.
9.
A differential screening study using high-resolution (HR)-hydrophilic interaction chromatography (HILIC)-electrospray ionization (ESI)–quadrupole time-of-flight mass spectrometry (Q-TOF MS) was conducted to identify saxitoxin (STX) analogues in the marine dinoflagellate toxic sub-clone Alexandrium tamarense Axat-2 and the non-toxic sub-clone UAT-014-009 derived from the same Japanese isolate. One unknown compound was identified only in the toxic sub-clone and was found to have the molecular formula C9H16N6O2. This structure differed from that of decarbamoyl STX (dcSTX; C9H16N6O3) by the loss of a single oxygen. A 12-deoxy-dcSTX standard (a mixture of 12α- and β-deoxy-dcSTX) was chemically prepared from dcSTX by reduction with sodium borohydride. The unknown compound in the toxic strain of A. tamarense was identified as 12β-deoxy-dcSTX by comparison of its HR-HILIC-LC–MS retention time and HR–MS/MS spectrum with those of the chemically prepared standard, and the identification was confirmed by high-sensitivity HPLC analysis with post-column fluorescent derivatization. Moreover, two Japanese isolates of A. catenella showing toxin profiles different from that of A. tamarense were also found to contain 12β-deoxy-dcSTX. Previously, 12β-deoxy-dcSTX was isolated from the freshwater cyanobacterium Lyngbya wollei, which produces a unique set of STX analogues. This study is the first evidence of the presence of 12β-deoxy-dcSTX in marine dinoflagellates.  相似文献   
10.
The mechanism of the self-regulation of gene expression in living cells is generally explained by considering complicated networks of key-lock relationships, and in fact there is a large body of evidence on a hugenumber of key-lock relationships. However, in the present article we stress that with the network hypothesis alone it is impossible to fully explain the mechanism of self-regulation in life. Recently, it has been established that individual giant DNA molecules, larger than several tens of kilo base pairs, undergo a large discrete transition in their higher-order structure. It has become clear that nonspecific weak interactions with various chemicals, suchas polyamines, small salts, ATP and RNA, cause on/off switching in the higher-order structure of DNA. Thus, the field parameters of the cellular environment should play important roles in the mechanism of self-regulation, in addition to networks of key and locks. This conformational transition induced by field parameters may be related to rigid on/off regulation, whereas key-lock relationships may be involved in a more flexible control of gene expression.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号