首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   153篇
  免费   12篇
  国内免费   216篇
  2024年   1篇
  2023年   10篇
  2022年   6篇
  2021年   8篇
  2020年   6篇
  2019年   15篇
  2018年   16篇
  2017年   12篇
  2016年   16篇
  2015年   15篇
  2014年   21篇
  2013年   14篇
  2012年   17篇
  2011年   30篇
  2010年   23篇
  2009年   17篇
  2008年   29篇
  2007年   27篇
  2006年   10篇
  2005年   12篇
  2004年   9篇
  2003年   14篇
  2002年   10篇
  2001年   7篇
  2000年   3篇
  1999年   4篇
  1998年   3篇
  1996年   6篇
  1995年   5篇
  1994年   4篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1989年   5篇
  1987年   1篇
  1985年   1篇
排序方式: 共有381条查询结果,搜索用时 17 毫秒
1.
河口地区牡蛎礁的生态功能及恢复措施   总被引:6,自引:0,他引:6  
在许多温带河口区,牡蛎礁是具有重要生态功能的特殊生境。牡蛎礁在净化水体、提供栖息生境、保护生物多样性和耦合生态系统能量流动等方面均具有重要的功能。近100年来,由于过度采捕、环境污染、病害和生境破坏等原因,许多温带河口区牡蛎种群数量持续下降,河口生态系统的结构与功能受到破坏,富营养化越来越严重。为了修复河口生态系统、净化水质和促进渔业可持续发展,近20年来,世界各地开展了一系列牡蛎礁的恢复活动,尤其美国在东海岸及墨西哥湾建立了大量的人工牡蛎礁,许多研究结果证实,构建的人工牡蛎礁经过2~3年时间,就能恢复自然生境的生态功能。本文介绍了我国首次牡蛎增殖放流工程-长江口南北导堤牡蛎礁,近2年的监测结果显示,长江口导堤牡蛎种群数量快速增长,附近水生生态系统的结构与功能得到明显改善。最后,针对目前牡蛎礁恢复过程中存在的不足,提出了需进一步研究的课题,包括牡蛎基础生物学(病害和分子系统进化),牡蛎礁恢复的关键技术、科学程序及成功的评价标准等。  相似文献   
2.
长江口及邻近海域富营养化指标响应变量参照状态的确定   总被引:1,自引:0,他引:1  
对长江口富营养化指标中的响应变量进行了筛选,并在长江口分区的基础上,运用参照点或观测点指标频数分布曲线法,对1992年-2010年的数据进行分析,确定了长江口外海区和舟山海区富营养化指标中响应变量的参照状态.选择叶绿素a和底层溶解氧作为响应指标的必选指标,浮游植物密度和CODMn作为辅助指标.经分析,长江口口外海区叶绿素a、浮游植物密度、CODMn和底层溶解氧的春夏秋3个季节的参照状态分别为0.87mg,/m3,17.44× 103个/L,0.42mg/L,8.36mg/L;1.88mg/m3,25.96×103个/L,0.56mg/L,4.22mg/L;0.84mg/m3,12.10×103个/L,0.46mg/L,6.95mg/L;舟山海区叶绿素a、浮游植物密度、CODMn和溶解氧的春夏秋3个季节的参照状态分别为0.73mg/m3,6.77×103个/L,0.51 mg/L,8.75mg/L;1.00mg/m3,9.72×103个/L,0.37mg/L,5.94mg/L;0.78mg/m3,4.59×103个/L,0.55mg/L,7.40mg/L.本研究确定的参照状态值能较为客观的反映该海域的富营养化参照状态,且不同分区,不同季节间的指标的参照状态亦存在着显著的差异.  相似文献   
3.
基于GIS的长江口海域生态系统脆弱性综合评价   总被引:5,自引:0,他引:5  
何彦龙  袁一鸣  王腾  张昊飞  陈耀辉 《生态学报》2019,39(11):3918-3925
气候变化、富营养化、生境破碎等是全球普遍面临的生态问题,科学评估生态系统外部压力及其弹性力,对生态系统管理和生态修复具有重要的指导意义。使用空间主成分分析(SPCA)和层次分析法(AHP)构建评价指标体系,结合地理信息系统软件,对长江口海域生态环境脆弱性进行综合评价,并根据生态环境脆弱性指数(EVI)值,将研究区生态环境脆弱性分为5级:微度脆弱(0.5)、轻度脆弱(0.5—0.8)、中度脆弱(0.8—1.0)、重度脆弱(1.0—1.2)、极度脆弱(1.2—1.5)。结果表明:空间尺度上,长江口口门内生态环境脆弱度最高,生态环境脆弱度从口门内向口门外呈显著的降低趋势,近五年,口门内极度脆弱区空间分布南移;评估区域内,约2000 km~2的极度脆弱区发生了转变,极度脆弱区、重度脆弱区面积占比分别下降了7%和5%,长江口海域生态环境脆弱性明显好转。总体上,近年来大量陆源污染物输入以及生态系统结构变化,是导致长江口生态环境脆弱度较高的重要因素。  相似文献   
4.
长江口水生动物食物网营养结构及其变化   总被引:1,自引:0,他引:1  
为研究长江口水生动物食物网营养结构及其变化, 运用胃含物分析法研究了2016—2017年长江口及其邻近水域捕获的43种水生动物的食性类型与营养结构, 并与20世纪90年代和2006年文献数据进行了比较, 结果表明, 长江口及其邻近水域捕获的水生动物分为4种食性类型: 浮游生物食性、底栖生物食性、游泳生物食性、混合食性, 其中浮游生物食性消费者占绝对优势, 为39.53%; 游泳生物食性消费者所占比例最少, 为11.63%。所分析样品的营养级可分为3级, 其中植食性消费者占优势, 为76.75%; 中级肉食性消费者所占比例最少, 为4.65%; 与20世纪90年代相比, 12种常见鱼类的平均营养级由3.80下降到2.87。长江口水生动物食物网结构较为复杂, 生产者类型包括底栖藻类、浮游植物、有机碎屑3种, 主要由牧食食物链和碎屑食物链构成复杂的食物网。  相似文献   
5.
研究针对长江口岛屿沙洲湿地陆向发育的不同时期表层沉积物中氮营养盐的变化规律,得出:(1)长江口岛屿沙洲湿地陆向发育过程中,表层沉积物环境也在不断变化,氮营养盐含量逐步增加,处在陆向发育前期的白茆沙,全氮含量较低,仅为30 mg/kg,而发育较为成熟的崇明东滩全氮含量较高,达470 mg/kg;同时随着岛屿沙洲湿地陆向发育,表层沉积物全氮分布越来越不均匀;(2)长江口岛屿沙洲湿地随高程梯度,全氮的含量逐步增加,其中芦苇带最高,420 mg/kg,光滩最低,110 mg/kg;这也说明岛屿沙洲陆向发育过程中,表层沉积物全氮含量逐步增加;另外,各形态无机氮含量占其所在高程无机氮的比例相对稳定,其中氨氮最高,59%~60%,亚硝酸盐最低,17%~19%,氨氮是无机氮的主要存在形式.  相似文献   
6.
光照和营养盐磷对微型及微微型浮游植物生长的影响   总被引:8,自引:2,他引:6  
方涛  李道季  余立华  高磊  张利华 《生态学报》2006,26(9):2783-2790
2004年9月,在长江口及邻近水域通过在培养水体中添加不同量的磷酸盐和改变光照强度进行现场受控培养实验,对光照和营养盐磷耦合培养作用下浮游植物生长及对磷营养盐的吸收变化进行了研究,结果表明:高光照条件下(100﹪自然光照),磷酸盐浓度在高磷水平(0.60μmol/L)培养水体中下降速率明显比中磷(0.41μmol/L)、低磷水平(0.25μmol/L)快,浮游植物生长存在着显著的磷限制性,微型浮游植物(nanophytoplankton,简称Nano,2~20μm)在高磷水平下的生长明显得到促进,聚球藻(Synechococcus sp.,简称Syn,<2μm)密度在培养初期有小幅度增加,而微微型真核浮游植物(picoeukaryote,简称Euk,<2μm)在低磷水平下生长较快;在低光照条件下(50﹪自然光照),磷酸盐浓度在高磷水平培养水体中的下降是受到抑制的,Nano和Syn也都更宜在中磷水平培养水体中生长,Euk在高磷水平下的生长也是受到抑制的,且在中磷水平培养水体中,三类浮游植物的生长周期都得到延长;无光照暗环境培养条件下磷酸盐浓度在不同磷水平下始终保持着增加趋势,三类浮游植物也都无法生长,磷酸盐浓度随培养时间呈线性增加趋势,浮游植物细胞密度则呈指数下降趋势,且磷酸盐的添加对其本身的释放速率和浮游植物衰减速率都没有影响.  相似文献   
7.
宋伦  宋广军  吴金浩  杨国军  刘印  刘苏萱 《生态学报》2022,42(16):6838-6852
采用高通量测序-分子鉴定分级技术于2019年对长山群岛全海域真核微藻粒级结构进行了研究。结果发现,春季以中(47%)、小粒级(41%)为主,夏季以小(39%)、大粒级(38%)为主,秋季以大粒级(60%)为主,春、夏、秋季小、中、大粒级微藻比例为42:47:11、39:23:38、22:18:60。小粒级微藻优势种为细小微胞藻(Micromonas pusilla)、融合微胞藻(Micromonas commoda)和金牛微球藻(Ostreococcus tauri),中粒级微藻优势种为剧毒卡尔藻(Karlodinium veneficum)、大粒级微藻优势种为柔弱几内亚藻(Guinardia delicatula)、平野亚历山大藻(Alexandrium hiranoi)、多纹膝沟藻(Gonyaulax polygramma),综合整个真核微藻群落,春季由中粒径的剧毒卡尔藻占据优势(23.9%),夏季由大粒径的平野亚历山大藻占据优势(29.4%),秋季由大粒径的多纹膝沟藻占据优势(66.8%),有毒甲藻在该海域中占有绝对优势,贝毒累积风险较高,小粒径微藻中金牛微球藻和抑食金球藻曾在渤海引发褐潮,潜在威胁该海域贝类养殖业。虾夷扇贝对小粒级和大粒级微藻的选择性较低,对中粒级微藻的选择性较高,尤其对水体中优势种剧毒卡尔藻一直表现出主动选择。光学需氧量、无机氮、溶解氧、石油类及部分重金属Cd、As、Hg影响着整个长山群岛海域真核微藻粒级结构时空演变。  相似文献   
8.
封面图说     
<正>东海舟山海域——舟山位于长江口以南、杭州湾以东的浙江省北部,属东海海域。其陆地面积12410公顷,大小岛屿有1300多个,其中舟山本岛面积为4720公顷,占陆地总面积的38%,为中国第四大岛。舟山群岛岛礁众多,星罗棋布,约相当于中国海岛总数的20%。舟山不仅是我国最大的渔场,也是世界著名四大渔场之一。舟山的黄鱼、带  相似文献   
9.
长江口及东海夏季小型底栖动物丰度和生物量变化   总被引:4,自引:0,他引:4  
史本泽  于婷婷  徐奎栋 《生态学报》2015,35(9):3093-3103
2012年7月,对长江口及东海海域的小型底栖动物类群组成、丰度、生物量的空间分布及其与沉积环境的关系进行了调查研究。该研究海域夏季小型底栖动物的丰度和生物量总体上自北向南递减,在长江口以东的海域由近岸向外海增加,至约45 m等深线达到最高,然后向深水区减少。其小型底栖动物的丰度和生物量分别为(1203±191) 个/10 cm2和(723±171) μg 干重/10 cm2,略高于同一海域春季和秋冬季的数量,但明显低于以往夏季的数量,这可能与本年度该海域沉积物中叶绿素a含量明显偏低有关。在小型底栖动物11个主要类群中,自由生线虫在丰度上占绝对优势(94.1%),其次是桡足类(2.7%)和涡虫类(1.2%)。线虫在生物量上也是最优势类群(62.1%),其次是多毛类(18.8%)、桡足类(8.3%)和涡虫类(6.1%)。Spearman相关分析表明,小型底栖动物的生物量、桡足类和涡虫的丰度均与沉积物中有机氮含量呈负相关;多毛类的丰度与盐度、叶绿素a呈显著正相关;而线虫与所测环境因子未见任何相关关系。BIOENV分析显示,与小型底栖动物各类群的丰度相关性最高的环境因子组合为盐度、沉积物含水量和有机氮含量。研究发现,近10年该海域小型底栖动物的丰度呈总体下降趋势;而且,小型底栖动物的垂直分布随时间推移趋向于向沉积物表层聚集,一定程度上显示沉积环境趋于恶化。通过对近岸和外海两个站位的702条线虫生物体积的测算,获得两个站位线虫的平均个体干重分别为0.186 μg/个体和0.281 μg/个体,两站位平均为0.214 μg/个体,与2009年秋冬季相邻两站位的0.213 μg/个体非常接近,但各站位的线虫个体干重变化相对较大。该结果一方面反映了我国当前普遍采用的0.4 μg/个体系数高估了线虫的生物量,另一方面显示季节和站位差异影响了线虫个体的大小。  相似文献   
10.
林群  王俊  李忠义  吴强  《生态学杂志》2015,26(11):3523-3531
增殖放流是渔业资源养护的重要手段, 生态系统与放流种类能流格局的变化研究,是进行增殖容量评估的研究基础.根据2012和2013年黄河口邻近海域的资源调查数据,构建了黄河口邻近海域6、8、10月的Ecopath模型,比较分析了3个月份该海域生态系统能量流动的变化,初步评估了三疣梭子蟹的增殖容量.结果表明: 黄河口邻近海域生态系统的能量流动主要在营养级I~III之间进行,营养级IV以及以上的能量流动较小.6月第I营养级整合系统流动的比例最高,8月最低.第II营养级整合系统流动的比例8月最高,6月最低.三疣梭子蟹相对能量流动和绝对能量流动均是第III营养级最高,三疣梭子蟹的营养级3月平均为3.28.黄河口邻近海域生态系统有较高的剩余生产量,6月最高、8月最低,系统的总初级生产量/总呼吸(TPP/TR) 3个月份分别为5.49、2.47、3.01,总初级生产量/总生物量(TPP/B)分别为47.61、33.30、29.78,同时具有较低的循环指数(FCI:0.03~0.06),黄河口邻近海域生态系统处于脆弱的不稳定期.系统的能量转换效率为7.3%~11.5%;渔获物的平均营养级8月和10月有所下降,3个月份分别为3.23、2.97和2.82;总捕捞效率8月最高,6月最低.在黄河口邻近海域8月Ecopath模型基础上,初步评估三疣梭子蟹的增殖容量为1.5115 t·km-2.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号