首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4431篇
  免费   1257篇
  国内免费   1647篇
  2024年   19篇
  2023年   203篇
  2022年   233篇
  2021年   243篇
  2020年   231篇
  2019年   199篇
  2018年   166篇
  2017年   169篇
  2016年   177篇
  2015年   211篇
  2014年   314篇
  2013年   226篇
  2012年   320篇
  2011年   354篇
  2010年   327篇
  2009年   325篇
  2008年   407篇
  2007年   298篇
  2006年   280篇
  2005年   307篇
  2004年   303篇
  2003年   235篇
  2002年   240篇
  2001年   185篇
  2000年   164篇
  1999年   151篇
  1998年   123篇
  1997年   112篇
  1996年   108篇
  1995年   108篇
  1994年   91篇
  1993年   100篇
  1992年   75篇
  1991年   81篇
  1990年   66篇
  1989年   56篇
  1988年   17篇
  1987年   24篇
  1986年   10篇
  1985年   13篇
  1984年   16篇
  1983年   13篇
  1982年   11篇
  1981年   13篇
  1980年   4篇
  1975年   2篇
  1966年   2篇
  1963年   1篇
  1959年   1篇
  1950年   1篇
排序方式: 共有7335条查询结果,搜索用时 15 毫秒
1.
以4种不同温度类型的冬小麦品种'小偃6号'、'NR9405'、'陕229'和'RB6'为材料,在0~250 mmol/L NaCl胁迫条件下,采用水培试验研究了钙调蛋白抑制剂(CPZ)、钙离子通道阻断剂(LaNO3)和钙离子螯合剂(EGTA)等对冬小麦盐分吸收的影响及其作用机理.结果显示:在中盐(150 mmol/L NaCl)胁迫下3种制剂均显著增加了各品种小麦植株对Na+的吸收,减少了K+吸收,且其作用依次表现为CPZ>EGTA>LaNO3.中盐胁迫下,各种制剂对冷型小麦'陕229'和'RB6'盐分吸收的影响大于暖型小麦'小偃6号'和‘NR9405',而高盐(250 mmol/L)胁迫下这种差异缩小.研究表明,Ca2+对小麦Na+吸收的调节作用主要通过钙调蛋白(CaM)来完成, CaM不但控制小麦Na+净吸收和累积,而且在小麦K+吸收中也起重要作用;在盐胁迫下冷型小麦 '陕229'和'RB6'对Ca2+和CaM活性的要求大于暖型小麦'小偃6号'和'NR9405'.  相似文献   
2.
天然虾青素产业的发展趋势分析   总被引:2,自引:0,他引:2  
随着雨生红球藻生产虾青素产业规模的扩大,其保藏方法的研究趋热,富集新功能性成分的雨生红球藻保健食品及饮料将是最新研究热点之一。斜生栅藻可能是下一个天然虾青素产业化的热点藻类。斜生栅藻、螺旋藻和雨生红球藻共培养的新化感效应研究正在进行。高产虾青素的农作物新品种的培育将是产业化和商业化的发展新趋势。海生细菌副球菌N-81106有较大的产业化新潜力。  相似文献   
3.
乌梁素海湖滨湿地细菌群落结构多样性   总被引:12,自引:0,他引:12  
杜瑞芳  李靖宇  赵吉 《微生物学报》2014,54(10):1116-1128
【目的】了解乌梁素海湖滨湿地水陆过渡带细菌群落结构及多样性变化,探讨富营养化湖泊湿地基质条件对细菌群落结构的影响。【方法】应用变性梯度凝胶电泳(PCR-DGGE)技术,分析和比较了依陆向分布的4个水陆过渡带样点的湿地细菌群落结构多样性,采用典型对应分析(CCA)探讨了湿地基质因子对细菌多样性的影响。【结果】DGGE图谱显示依湖泊水体沉积物(S-1)→湖滨芦苇沼泽沉积物(S-2)→湖滨碱蓬盐化草甸土壤(S-3)→岸上白刺荒漠土壤(S-4),4个样点的条带数依次减少,对应菌群结构及多样性变化显著;多样性指数分析结果显示,Shannon-Wiener指数(H)、均匀度(E)、丰富度(S)以及Simpson指数(DS)均显示依陆向分布逐步下降的规律,即:S-1S-2S-3S-4。序列比对结果显示,沉积物及土壤细菌分属于变形菌门(78.6%)、酸杆菌门(7.1%)、拟杆菌门(14.3%)这3个细菌类群,优势菌门为变形菌门,而变形菌门又分为5个亚群,其中ε变形菌纲为优势亚群;CCA结果表明,图中各条带对应物种的分布受铵态氮、总氮、有机碳、水溶盐总量、氯离子以及钾离子影响最大。【结论】乌梁素海富营养化湖泊的水陆过渡带湿地细菌群落结构存在较大差异,富营养化相关基质因子对细菌多样性影响较大。这为研究富营养化湖泊湿地水陆过渡带的细菌结构多样性及空间异质性提供了科学依据。  相似文献   
4.
野生大豆抗感大豆孢囊线虫材料内生细菌多样性分析   总被引:2,自引:0,他引:2  
【目的】对抗感野生大豆材料根内生细菌的多样性进行比较分析,为研究野生大豆内生细菌与大豆孢囊线虫之间的相互关系奠定基础。【方法】在野生大豆抗大豆孢囊线虫3号生理小种筛选基础上,利用扩增核糖体DNA限制性分析(Amplified ribosomal DNA restriction analysis,ARDRA)和16S rDNA克隆文库测序相结合的方法,对抗感野生大豆根系内生细菌多样性及群落结构进行分析。【结果】野生大豆根内生细菌分属于6大类群,其中变形菌门(Proteobacteria)和厚壁菌门(Firmicutes)为优势类群,相对丰度分别为46.8%和13.6%,另外有少量的放线菌门(Actinobacteria)、拟杆菌门(Bacteroidetes)、酸杆菌门(Acidobacteria)、异常球菌-栖热菌门(Deincoccus-Thermus)和古细菌(Archaea),18.8%克隆序列与环境中未培养细菌的16S rDNA序列有较高的相似性。野生大豆高抗材料内生细菌的多样性比高感材料更为丰富,且抗感材料内生细菌优势菌群存在明显差异,中慢生根瘤菌(Mesorhizobium tamadayense)、肠杆菌(Enterobacter ludwigii)和巨大芽孢杆菌(Bacillus megaterium)为野生大豆高抗材料特有的可操作分类单元(Operational Taxonomic Units,OTUs)中的优势种群。【结论】研究结果表明抗感野生大豆根内生细菌的优势种群存在明显差异,而内生细菌的优势种群与大豆孢囊线虫的相互关系正在深入分析研究。  相似文献   
5.
对采自广西、云南和广东的美花石斛(Dendrobium loddigesii Rolfe)野生植株根、茎和叶内的内生细菌进行分离并测定其促生特性,采用扩增核糖体DNA限制性酶切分析(ARDRA)与UPGMA聚类分析相结合的方法对内生细菌菌株进行分类并确定优势属;在此基础上,对具有解磷、解钾和产生长素能力的菌株进行促生潜力评价。结果显示:从不同产地美花石斛植株不同部位共分离得到67株内生细菌菌株,其分布呈现出组织与地区的特异性;其中,来源于广西的植株中菌株数量最多(42株),分离自茎的菌株数量最多(34株)。67株内生细菌菌株可分为31个ARDRA簇,经16S rDNA序列比对鉴定为12个属,包括假单胞菌属(Pseudomonas)、微杆菌属(Microbacterium)、肠杆菌属(Enterobacter)、芽孢杆菌属(Bacillus)、鞘氨醇单胞菌属(Sphingomonas)、葡萄球菌属(Staphylococcus)、嗜冷杆菌属(Psychrobacter)、短波单胞菌属(Brevundimonas)、涅斯捷连科氏菌属(Nesterenkonia)、副球菌属(Paracoccus)、泛菌属(Pantoea)和沙雷氏菌属(Serratia),其中芽孢杆菌属、微杆菌属和肠杆菌属为优势属;来源于广西的植株中内生细菌的丰度与多样性均高于其他两地。在67株内生细菌菌株中,有30株菌株具有解无机磷和解有机磷的双重能力、22株具有解钾能力、24株具有产生长素能力,其中仅8株菌株兼具3种促生能力。组培实验结果显示:在培养基中接种1×106CFU·mL-1芽孢杆菌DLB20菌株,对株高2~3 cm和3~4 cm的美花石斛试管苗生长有促进作用,且更有利于株高3~4 cm试管苗的生根,表明具有解磷、解钾和产生长素能力的菌株对美花石斛试管苗有一定的促生潜力。  相似文献   
6.
厌氧条件下微量琼脂糖弥散法抑菌试验的建立及应用   总被引:1,自引:0,他引:1  
作者建立了在厌氧条件下两种微量而敏感的抑菌试验,可用于鉴定蛋白质或多肽类抑菌物质。(1)琼脂糖弥散法:可检测抗菌蛋白抑菌活性,(2)电泳凝胶弥散法:可直接确定存在于PAGE凝胶中抗菌蛋白条带。应用这两种方法,作者首次鉴定出血链球菌培养上清液中存在抑制牙周可疑致病菌的抗菌蛋白。  相似文献   
7.
鼻咽癌与细菌L型的关系   总被引:1,自引:0,他引:1  
大量研究表明,鼻咽癌与EB病毒有关。通过对98例鼻咽癌组织的切片革兰氏染色L型检查、电镜和L型抗体免疫组化染色等研究,发现鼻咽癌组织中细菌L型亦甚常见,切片革兰氏染色有78例查见细菌L型,其阳性率为79.6%;免疫细化染色L型抗原检出阳性率为62.2%,电镜不仅在细胞间质见到细菌L型,而且在癌细胞、巨噬胞细等细胞胞质内也见到细菌L型。提示,细菌L型与鼻咽癌关系十分密切,很可能是鼻咽癌致癌因子之一。  相似文献   
8.
在灭菌自来水模拟水体中,研究了7种细菌的存活和生长规律。Klebsiella pneumo-niae,Enterobacter aerogenes,Agrobacterium tumefatciens,在7天内平板计数降至0,而水体中镜检细菌总数(AODC)和活菌直接计数(DVC)结果无大变化,说明细菌已变成活的非可培养状态。Micrococcus,flavus 和 Streptococcus faecalis 的可培养菌数也可降至0。Pseudomonas sp.在48小时内由10~5降至10~2cfu/ml,随即升至10~6 cfu/ml 并持续到实验终了(41天)。Bacillus subtilis 在48小时平板计数降至10~2cfu/ml 并维持在该水平至实验结束(38天)。研究结果表明仅用涂布平板法检测多种细菌在水环境中的生存和分布是不合适的。  相似文献   
9.
研究氮沉降和降雨变化对土壤细菌群落结构的影响,对未来预测多个气候变化因子对草地生态系统影响的交互作用具有重要意义。以施氮和灌溉分别模拟氮沉降和降雨增加,采用高通量测序技术,研究8个氮添加水平(0、15、30、50、100、150、200、300kg N hm-2a-1)和2个水分添加水平(不灌溉、模拟夏季增雨100 mm灌溉)对土壤细菌群落结构的影响。结果表明,氮素和水分输入增加后,土壤细菌群落组成、丰度均显著变化(P0.05)。在群落中占主导的细菌门类有疣微菌门Verrucomicrobia(30.61%—48.51%)、变形菌门Proteobacteria(21.37%—29.97%)、酸杆菌门Acidobacteria(9.54%—20.67%)和拟杆菌门Bacteroidetes(4.96%—9.74%)。在常规降雨和水分添加两种条件下,随着氮添加水平的增加,占主导的细菌门类(相对丰度1%)表现出不同的变化趋势。疣微菌门相对丰度在常规降雨N100—N300条件下显著降低,但在氮素和水分同时添加条件下随氮添加水平升高而逐渐升高,在N200—N300时显著升高。变形菌门和拟杆菌门相对丰度在常规降雨高氮添加条件下呈升高趋势,但在水分添加时却无明显变化。酸杆菌门相对丰度在常规降雨高氮添加条件下升高,但在水分添加后呈明显下降趋势。放线菌门Actinobacteria相对丰度在常规降雨N100—N300条件下显著升高,但在水分添加后高氮添加时显著降低。厚壁菌门Firmicutes相对丰度在常规降雨条件下无显著变化,但在水分和高氮添加条件下降低。浮霉菌门Planctomycetes相对丰度在两种不同的水分添加条件下均呈先升高后降低的趋势。氮素和水分添加对土壤细菌群落结构的变化存在明显的互作效应(P0.0001)。在不同氮素和水分输入条件下共有19个土壤细菌门类相对丰度有显著差异。土壤细菌群落结构的变化主要来自于疣微菌门和酸杆菌门的相对丰度变化,两者可作为土壤细菌群落结构变化的指示种。综上,氮素和水分添加显著改变了土壤细菌群落结构,氮素和水分对土壤细菌不同门类相对丰度变化存在明显的互作效应。  相似文献   
10.
为研究施用生石灰对池塘浮游细菌群落结构和多样性的影响,采用基于16S rRNA的高通量测序技术比较分析了施用生石灰前后精养池塘浮游细菌群落结构和多样性差异。研究结果显示,施用生石灰进行处理1d后,池塘优势浮游细菌在门和属水平上均与施用前相同,但相对丰度产生变化。在门水平上,蓝细菌门(Cyanobacteria)的相对丰度由53.80%显著降低至47.57%,拟杆菌门(Bacteroidetes)的相对丰度由7.00%显著降低至5.24%,变形菌门(Proteobacteria)的相对丰度由19.72%显著降低至17.60%,而放线菌门(Actinobacteria)的相对丰度由6.76%显著上升至13.47%,浮霉菌门(Planctomycetes)的相对丰度由8.24%显著上升至11.10%。另外,在属水平上,分枝杆菌属(Mycobacterium)的相对丰度由0.73%显著降低至0.49%,浮丝藻属(Planktothrix)的相对丰度由0.041%显著降低至0.0074%。施用生石灰后池塘浮游细菌群落的物种丰富度指数(ACE和Chao 1)和Shannon多样性指数均显著提高,且Simpon指数显著降低(P < 0.05)。研究结果可为施用生石灰管理池塘水质和进行疾病预防提供理论解释,并可为更加科学合理地利用生石灰管理池塘提供科学指导。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号