首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   1篇
  国内免费   32篇
  2023年   3篇
  2022年   1篇
  2021年   3篇
  2020年   6篇
  2019年   2篇
  2018年   1篇
  2016年   2篇
  2015年   2篇
  2014年   2篇
  2013年   2篇
  2011年   1篇
  2010年   1篇
  2008年   1篇
  2004年   3篇
  2001年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1988年   1篇
  1987年   1篇
排序方式: 共有40条查询结果,搜索用时 15 毫秒
1.
全球变暖是全人类面临的一个巨大挑战,而温室气体排放持续上升是全球变暖的关键因素,并引发一系列生态环境问题。甲烷是第二温室气体,对全球变暖的贡献达20%。然而,在甲烷代谢中发挥重要作用的产甲烷古菌和厌氧甲烷氧化古菌(anaerobic methanotroph,ANME)较难培养,极大地限制了人们对甲烷代谢及其影响碳源-汇关系与机制的研究。本文综述了最新产甲烷古菌和ANME富集、分离和培养方法,包括富集培养、原位培养、共培养、微流控技术、稀释分离和固体分离技术、ANME反应器和培养瓶富集培养,以及宏基因组预测和反向基因组学,并对这些方法的优缺点进行了评估,对未来甲烷代谢古菌的富集、分离和培养提出新的建议。  相似文献   
2.
新型产甲烷古菌研究进展   总被引:9,自引:4,他引:5  
产甲烷古菌是一类能利用简单化合物产生甲烷气体的厌氧菌。近年来,随着测序技术的不断发展,科学家结合宏基因组学和其他技术先后发现了众多之前未被报道的新型产甲烷古菌。基因组分析等研究发现这几类新型产甲烷古菌具有独特的甲烷代谢通路以及广泛的生态分布,科学家推测它们在全球生态调节以及碳循环中可能起到了不可忽视的作用。然而,这些新型产甲烷古菌大部分尚未通过传统培养方法获得纯培养菌株,其确切的生理代谢机制和生态功能还有待深入研究。为了更加系统地了解这些新型产甲烷古菌,本文从它们的分类、系统发育地位、代谢机制、生态分布以及分离培养等方面进行了综述,并对新型产甲烷古菌未来的研究方向进行了展望。  相似文献   
3.
冻土甲烷循环微生物群落及其对全球变化的响应   总被引:2,自引:0,他引:2  
冻土是陆地生态系统中最容易受到全球气候变化影响的碳库,既发挥着碳源又起着碳汇的作用。人们非常关注贮存于冻土中有机碳的最终归宿,是因为全球气候变暖会加快冻土的解冻,释放更多的温室气体(二氧化碳和甲烷)到大气中,从而进一步加剧温室效应。据估计每年从北半球冻原陆地生态系统释放进入大气的甲烷约占全球自然界释放甲烷总量的25%。研究证实冻土生物源甲烷的产生和消耗分别由耐(嗜)低温的产甲烷菌(methanogens)和甲烷氧化菌(methanotrophs)介导。鉴于冻土甲烷循环对全球甲烷平衡的显著作用以及在冻土生物地球化学循环中的重要功能,对介导冻土甲烷循环的产甲烷菌和甲烷氧化菌的研究将有助于更好地评估冻土生态系统对全球气候变化的响应和影响,本文就冻土甲烷循环过程、产甲烷菌、甲烷氧化菌的群落结构、活动、生态功能及其对气候和环境变化的响应机制的最新研究进行综述,以期为我国开展冻土甲烷循环机理研究提供支持。  相似文献   
4.
厌氧消化酸抑制研究进展   总被引:4,自引:1,他引:3  
厌氧消化工艺目前已广泛应用于各类废水的处理处置过程中,但在实际运行中,受消化条件和物料性质的影响,消化系统经常遭受由挥发性脂肪酸积累过多导致的酸抑制问题,引发产气量下降、产甲烷率降低等问题。近年来,有研究者发现,挥发性脂肪酸的种类和浓度及pH、温度是影响酸抑制的主要因素。基于此,相关研究者分别尝试了添加碱性化学药剂和微量元素及利用生物强化技术与微生物电化学技术来解除酸抑制的尝试,并都取得了不错的效果。本文综述了厌氧消化过程中酸抑制的产生过程、抑制机理及恢复方法,以期为解决厌氧消化酸抑制问题提供参考。  相似文献   
5.
内蒙古自治区二连盆地、海拉尔盆地是我国重要的煤层气产区,其中生物成因煤层气是煤层气的重要来源,但复杂物质转化产甲烷相关微生物群落结构及功能尚不清楚。【目的】研究煤层水中的微生物代谢挥发性脂肪酸产甲烷的生理特征及群落特征。【方法】以内蒙古自治区二连盆地和海拉尔盆地的四口煤层气井水作为接种物,分别添加乙酸钠、丙酸钠和丁酸钠厌氧培养;定期监测挥发性脂肪酸降解过程中甲烷和底物的变化趋势,应用高通量测序技术,分析原始煤层气井水及稳定期产甲烷菌液的微生物群落结构。【结果】除海拉尔盆地H303煤层气井微生物不能代谢丙酸外,其他样品均具备代谢乙酸、丙酸和丁酸产生甲烷的能力,其生理生态参数存在显著差异,产甲烷延滞期依次是乙酸丁酸丙酸;最大比产甲烷速率和底物转化效率依次是丙酸乙酸丁酸。富集培养后,古菌群落结构与煤层气井水的来源显著相关,二连盆地优势古菌为氢营养型产甲烷古菌Methanocalculus (相对丰度13.5%–63.4%)和复合营养型产甲烷古菌Methanosarcina (7.9%–51.3%),海拉尔盆地的优势古菌为氢营养型产甲烷古菌Methanobacterium(24.3%–57.4%)和复合营养型产甲烷古菌Methanosarcina(29.6%–66.5%);细菌群落则与底物类型显著相关,硫酸盐还原菌Desulfovibrio(12.0%–41.0%)、互营丙酸氧化菌Syntrophobacter(39.6%–75.5%)和互营丁酸菌Syntrophomonas(8.5%–21.9%)分别在乙酸钠、丙酸钠和丁酸钠处理组显著富集。【结论】煤层气井水微生物可降解挥发性脂肪酸(乙酸、丙酸和丁酸)并具有产甲烷潜力;乙酸可能被古菌直接代谢产甲烷,而丙酸和丁酸通过互营细菌和产甲烷古菌代谢产甲烷。Desulfovibrio、Syntrophobacter和Syntrophomonas分别在乙酸、丙酸和丁酸代谢过程中发挥了重要作用。这些结果为煤层气生物强化开采提供了一定的微生物资源基础。  相似文献   
6.
古丸菌纲(Archaeoglobi)是广古菌门下的纲级分类单元,包含古丸菌(Archaeoglobus)、地丸菌(Geoglobus)和铁丸菌(Ferroglobus)三个属,所属菌株均是严格嗜热厌氧菌,主要分布于海洋、陆地热液系统和油田环境中。Archaeoglobus属下的微生物是一类以硫酸盐、亚硫酸盐或硫代硫酸盐为电子受体代谢生成硫化氢(H2S)的化能自养或氢营养型微生物;而Geoglobus和Ferroglobus的成员则主要还原硝酸盐和铁离子。Archaeoglobi地理分布广泛,在元素生物地球化学循环过程中发挥着重要作用,是目前微生物生态学研究的一个热点。在进化方面,Archaeoglobi菌和产甲烷古菌具有较高的亲缘关系;同时,Archaeoglobi基因组中保留着部分产甲烷途径上的功能基因,最新研究表明部分未培养的Archaeoglobi基因组中含有完整的产甲烷通路。这些证据都表明Archaeoglobi菌的基因组特征可能是产甲烷古菌向硫酸盐还原菌进化的活化石。本文梳理了目前发现的11株Archaeoglobi菌株的生理生化特征和基因组分析结果,从化能自养、化能异养、硫化物呼吸、产乙酸、产甲烷等方面综述了已分离的Archaeoglobi菌的代谢特征,并基于宏基因组信息分析了未培养的Archaeoglobi菌基因组中的潜在代谢功能,为进一步分离培养此类未培养厌氧微生物提供理论指导。  相似文献   
7.
不同pH缓冲液对由乙酸产甲烷菌群结构的影响   总被引:1,自引:0,他引:1  
【目的】研究不同p H缓冲液对乙酸产甲烷过程及对细菌和古菌群落结构的影响。【方法】分别添加磷酸盐(PB)、4-羟乙基哌嗪乙磺酸(HEPES)、哌嗪-1,4-二乙磺酸(PIPES)和Na HCO3/CO2缓冲液到乙酸产甲烷菌系中,定期监测甲烷产生趋势,到稳定期后收集菌体,进行16S rRNA基因的末端限制性片段多态性分析(T-RFLP)。【结果】发现PB组的乙酸产甲烷菌系延滞期约为40d,显著高于其他组的20-24 d(P0.05);Na HCO3/CO2组乙酸转化为甲烷的比例为(88.3±0.5)%,显著高于其他组的77%-81%(P0.05);不同缓冲液组的最大甲烷比生长速率为0.46-0.57 d-1(P0.05);Na HCO3/CO2组的细菌群落变化最明显,主要是未培养细菌(unclassified bacteria)、螺旋菌科细菌(Spirochaetaceae)和未培养WWE1类群的丰度较其他组分别增加到(15.5±9.4)%、(7.3±4.6)%和(17.6±6.3)%,而互养菌科(Synergistaceae)的细菌丰度降低到(8.9±8.1)%。AC+PB组中的古菌类群发生了明显变化,以竹节状甲烷鬃毛菌(Methanosaeta harundinacea)相关的产甲烷古菌占主导(97±2%),而在HEPES、PIPES和Na HCO3/CO2组和不加缓冲液组中同时存在两类乙酸营养型产甲烷古菌M.harundinacea和联合鬃毛甲烷菌(Methanosaeta concilii),以及属于甲烷杆菌目(Methanobacteriales)的氢营养型产甲烷古菌。【结论】在乙酸产甲烷菌系中加入PB增加了甲烷产生的延滞期,加入Na HCO3/CO2增加了甲烷产量,但是添加p H缓冲液不会影响到菌系的最大甲烷比生长速率。加入PB和Na HCO3/CO2都会显著改变微生物的菌群结构。这些研究为设计适宜的产甲烷菌系生长条件提供了参考。  相似文献   
8.
Hungate厌氧技术,从豆制品废水厌氧发酵液中分离到一株细胞直径为0.5--1.2μm的球形产甲烷细菌,编号8508。该菌株利用H2/CO2和甲酸盐生长产甲烷。生长要求乙酸盐、酵母膏和酪素水解物。最佳生长要求0.5--1.0%的NaCl或MgCl20生长的最适温度为35℃,最适pH 7.0--7.3。DNA的G+C含量为41mol%。菌株8508可能是甲烷球菌属(Metha-nococcus)中的一个新种,但还要通过DNA杂交、荧光抗体等测定证实。  相似文献   
9.
甲烷作为全球第二大温室气体,是典型的可再生清洁能源,也是碳循环中的重要物质组成。大气中约74%的甲烷由产甲烷古菌和其他微生物的互营产生,种间电子传递(interspecies electron transfer, IET)是微生物菌群降低热力学能垒、实现互营产甲烷的核心过程。IET可分为间接种间电子传递(mediated interspecies electron transfer,MIET)和直接种间电子传递(direct interspecies electron transfer, DIET)两种类型,其中MIET依赖氢气、甲酸等载体完成电子的远距离传输,而DIET则依赖导电菌毛、细胞色素c等膜蛋白,通过微生物的直接接触实现电子传递。本文将从IET的研究历程出发,从电子传递机制、微生物种类、生态多样性等方面对微生物互营产甲烷过程中的两种IET类型进行比较,最后对未来待探索的方向进行展望。本综述有助于加深对微生物互营产甲烷过程中IET的理解,为解决由甲烷引发的全球气候变暖等生态问题提供理论支撑。  相似文献   
10.
以合成废水为基质,研究了采用硫酸盐还原-甲烷化两相厌氧新型工艺处理含高浓度硫酸盐有机废水的系统运行工艺条件.结果表明,酸化-硫酸盐还原反应器的适宜pH为6.5-7.0;500mg/l的S~(2-)使SRB的硫酸盐还原活性下降;208mg/l的[H_2S]_L抑制MPB活性的95.4%;推导出估算气提塔出水回流比R的模型;以得到的工艺条件为依据处理了含19200mg/1的SO_4~(2-)和29400mg/l COD的味精废水.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号