首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47378篇
  免费   2119篇
  国内免费   1047篇
  2023年   454篇
  2022年   578篇
  2021年   698篇
  2020年   969篇
  2019年   1188篇
  2018年   1176篇
  2017年   974篇
  2016年   966篇
  2015年   879篇
  2014年   2234篇
  2013年   4004篇
  2012年   1517篇
  2011年   2349篇
  2010年   1660篇
  2009年   2152篇
  2008年   2300篇
  2007年   2299篇
  2006年   2022篇
  2005年   1903篇
  2004年   1552篇
  2003年   1460篇
  2002年   1222篇
  2001年   857篇
  2000年   781篇
  1999年   684篇
  1998年   720篇
  1997年   662篇
  1996年   660篇
  1995年   647篇
  1994年   662篇
  1993年   610篇
  1992年   561篇
  1991年   501篇
  1990年   463篇
  1989年   450篇
  1988年   402篇
  1987年   416篇
  1986年   285篇
  1985年   704篇
  1984年   1022篇
  1983年   707篇
  1982年   798篇
  1981年   642篇
  1980年   570篇
  1979年   491篇
  1978年   331篇
  1977年   328篇
  1976年   273篇
  1974年   227篇
  1973年   223篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
1.
CD36 is a scavenger receptor with multiple ligands and cellular functions, including facilitating cellular uptake of free fatty acids (FFAs). Chronic alcohol consumption increases hepatic CD36 expression, leading to the hypothesis that this promotes uptake of circulating FFAs, which then serve as a substrate for triglyceride (TG) synthesis and the development of alcoholic steatosis. We investigated this hypothesis in alcohol-fed wild-type and Cd36-deficient (Cd36−/−) mice using low-fat/high-carbohydrate Lieber-DeCarli liquid diets, positing that Cd36−/− mice would be resistant to alcoholic steatosis. Our data show that the livers of Cd36−/− mice are resistant to the lipogenic effect of consuming high-carbohydrate liquid diets. These mice also do not further develop alcoholic steatosis when chronically fed alcohol. Surprisingly, we did not detect an effect of alcohol or CD36 deficiency on hepatic FFA uptake; however, the lower baseline levels of hepatic TG in Cd36−/− mice fed a liquid diet were associated with decreased expression of genes in the de novo lipogenesis pathway and a lower rate of hepatic de novo lipogenesis. In conclusion, Cd36−/− mice are resistant to hepatic steatosis when fed a high-carbohydrate liquid diet, and they are also resistant to alcoholic steatosis. These studies highlight an important role for CD36 in hepatic lipid homeostasis that is not associated with hepatic fatty acid uptake.  相似文献   
2.
Human mast cells (MCs) contain TG-rich cytoplasmic lipid droplets (LDs) with high arachidonic acid (AA) content. Here, we investigated the functional role of adipose TG lipase (ATGL) in TG hydrolysis and the ensuing release of AA as substrate for eicosanoid generation by activated human primary MCs in culture. Silencing of ATGL in MCs by siRNAs induced the accumulation of neutral lipids in LDs. IgE-dependent activation of MCs triggered the secretion of the two major eicosanoids, prostaglandin D2 (PGD2) and leukotriene C4 (LTC4). The immediate release of PGD2 from the activated MCs was solely dependent on cyclooxygenase (COX) 1, while during the delayed phase of lipid mediator production, the inducible COX-2 also contributed to its release. Importantly, when ATGL-silenced MCs were activated, the secretion of both PGD2 and LTC4 was significantly reduced. Interestingly, the inhibitory effect on the release of LTC4 was even more pronounced in ATGL-silenced MCs than in cytosolic phospholipase A2-silenced MCs. These data show that ATGL hydrolyzes AA-containing TGs present in human MC LDs and define ATGL as a novel regulator of the substrate availability of AA for eicosanoid generation upon MC activation.  相似文献   
3.
X-linked adrenoleukodystrophy (X-ALD) is a peroxisomal disorder caused by impaired degradation of very long-chain fatty acids (VLCFAs) due to mutations in the ABCD1 gene responsible for VLCFA transport into peroxisomes. Lorenzo''s oil, a 4:1 mixture of glyceryl trioleate and glyceryl trierucate, has been used to reduce the saturated VLCFA level in the plasma of X-ALD patients; however, the mechanism by which this occurs remains elusive. We report the biochemical characterization of Lorenzo''s oil activity toward elongation of very long-chain fatty acid (ELOVL) 1, the primary enzyme responsible for the synthesis of saturated and monounsaturated VLCFAs. Oleic and erucic acids inhibited ELOVL1, and, moreover, their 4:1 mixture (the FA composition of Lorenzo''s oil) exhibited the most potent inhibitory activity. The kinetics analysis revealed that this was a mixed (not a competitive) inhibition. At the cellular level, treatment with the 4:1 mixture reduced the level of SM with a saturated VLCFA accompanied by an increased level of SM with a monounsaturated VLCFA, probably due to the incorporation of erucic acid into the FA elongation cycle. These results suggest that inhibition of ELOVL1 may be an underlying mechanism by which Lorenzo''s oil exerts its action.  相似文献   
4.
5.
Eukaryotic protein kinases are typically strictly controlled by second messenger binding, protein/protein interactions, dephosphorylations or similar processes. None of these regulatory mechanisms is known to work for protein kinase CK2 (former name “casein kinase 2”), an acidophilic and constitutively active eukaryotic protein kinase. CK2 predominantly exists as a heterotetrameric holoenzyme composed of two catalytic subunits (CK2α) complexed to a dimer of non-catalytic subunits (CK2β). One model of CK2 regulation was proposed several times independently by theoretical docking of the first CK2 holoenzyme structure. According to this model, the CK2 holoenzyme forms autoinhibitory aggregates correlated with trans-autophosphorylation and driven by the down-regulatory affinity between an acidic loop of CK2β and the positively charged substrate binding region of CK2α from a neighboring CK2 heterotetramer. Circular trimeric aggregates in which one-half of the CK2α chains show the predicted inhibitory proximity between those regions were detected within the crystal packing of the human CK2 holoenzyme. Here, we present further in vitro support of the “regulation-by-aggregation” model by an alternative crystal form in which CK2 tetramers are arranged as approximately linear aggregates coinciding essentially with the early predictions. In this assembly, the substrate binding region of every CK2α chain is blocked by a CK2β acidic loop from a neighboring tetramer. We found these crystals with CK2Andante that contains a CK2β variant mutated in a CK2α-contact helix and described to be responsible for a prolonged circadian rhythm in Drosophila. The increased propensity of CK2Andante to form aggregates with completely blocked active sites may contribute to this phenotype.  相似文献   
6.

Aims

Septic shock, the severe form of sepsis, is associated with development of progressive damage in multiple organs. Kidney can be injured and its functions altered by activation of coagulation, vasoactive-peptide and inflammatory processes in sepsis. Endothelin (ET)-1, a potent vasoconstrictor, is implicated in the pathogenesis of sepsis and its complications. Protease-activated receptors (PARs) are shown to play an important role in the interplay between inflammation and coagulation. We examined the time-dependent alterations of ET-1 and inflammatory cytokine, such as tumor necrosis factor (TNF)-α in kidney tissue in lipopolysaccharide (LPS)-induced septic rat model and the effects of PAR2 blocking peptide on the LPS-induced elevations of renal ET-1 and TNF-α levels.

Main methods

Male Wistar rats at 8 weeks of age were administered with either saline solution or LPS at different time points (1, 3, 6 and 10 h). Additionally, we treated LPS-administered rats with PAR2 blocking peptide for 3 h to assess whether blockade of PAR2 has a regulatory role on the ET-1 level in septic kidney.

Key findings

An increase in ET-1 peptide level was observed in kidney tissue after LPS administration time-dependently. Levels of renal TNF-α peaked (around 12-fold) at 1 h of sepsis. Interestingly, PAR2 blocking peptide normalized the LPS-induced elevations of renal ET-1 and TNF-α levels.

Significance

The present study reveals a distinct chronological expression of ET-1 and TNF-α in LPS-administered renal tissues and that blockade of PAR2 may play a crucial role in treating renal injury, via normalization of inflammation, coagulation and vaso-active peptide.  相似文献   
7.
Hepatic lipid metabolism is controlled by integrated metabolic pathways. Excess accumulation of hepatic TG is a hallmark of nonalcoholic fatty liver disease, which is associated with obesity and insulin resistance. Here, we show that KH-type splicing regulatory protein (KSRP) ablation reduces hepatic TG levels and diet-induced hepatosteatosis. Expression of period 2 (Per2) is increased during the dark period, and circadian oscillations of several core clock genes are altered with a delayed phase in Ksrp−/− livers. Diurnal expression of some lipid metabolism genes is also disturbed with reduced expression of genes involved in de novo lipogenesis. Using primary hepatocytes, we demonstrate that KSRP promotes decay of Per2 mRNA through an RNA-protein interaction and show that increased Per2 expression is responsible for the phase delay in cycling of several clock genes in the absence of KSRP. Similar to Ksrp−/− livers, both expression of lipogenic genes and intracellular TG levels are also reduced in Ksrp−/− hepatocytes due to increased Per2 expression. Using heterologous mRNA reporters, we show that the AU-rich element-containing 3′ untranslated region of Per2 is responsible for KSRP-dependent mRNA decay. These findings implicate that KSRP is an important regulator of circadian expression of lipid metabolism genes in the liver likely through controlling Per2 mRNA stability.  相似文献   
8.
Palmitic acid (PA) is associated with higher blood concentrations of medium-chain acylcarnitines (MCACs), and we hypothesized that PA may inhibit progression of FA β-oxidation. Using a cross-over design, 17 adults were fed high PA (HPA) and low PA/high oleic acid (HOA) diets, each for 3 weeks. The [1-13C]PA and [13-13C]PA tracers were administered with food in random order with each diet, and we assessed PA oxidation (PA OX) and serum AC concentration to determine whether a higher PA intake promoted incomplete PA OX. Dietary PA was completely oxidized during the HOA diet, but only about 40% was oxidized during the HPA diet. The [13-13C]PA/[1-13C]PA ratio of PA OX had an approximate value of 1.0 for either diet, but the ratio of the serum concentrations of MCACs to long-chain ACs (LCACs) was significantly higher during the HPA diet. Thus, direct measurement of PA OX did not confirm that the HPA diet caused incomplete PA OX, despite the modest, but statistically significant, increase in the ratio of MCACs to LCACs in blood.  相似文献   
9.
目的:观察全反式维甲酸(ATRA)对乙酰胆碱受体(AChR)特异性淋巴细胞的体外调控作用,探讨其治疗重症肌无力(MG)的可能机制。方法:建立完全弗氏佐剂(CFA)对照组及实验性自身免疫性重症肌无力(EAMG)组大鼠,并获取淋巴结单个细胞悬液,以ACh R97-116多肽片段以及不同浓度的ATRA体外培养72 h,采用流式细胞仪法、CCK-8法、ELISA法分别检测活细胞比例、细胞凋亡和周期的改变以及Th亚群的格局和B细胞抗体分泌能力的变化。结果:ATRA显著降低活细胞比例(P0.001);不同浓度的ATRA均促进了特异性细胞群的凋亡(P0.001),且呈剂量依赖性,而ATRA未改变AChR特异性淋巴细胞的生长周期;ATRA处理后,CFA和EAMG组的淋巴细胞增殖均受到明显抑制,且ATRA对ACh R特异性的淋巴细胞的抑制明显(EAMG组,P0.01)于CFA组(P0.05);ATRA干预后,ACh R特异性CD4+T淋巴细胞的比例下降(P0.01),且ATRA促进了Th2、Treg细胞亚群百分比(P_(IL-4)0.001,P_(Foxp3)0.001),而抑制了促炎性的Th17、Th1细胞亚群百分比(P_(IL-17)0.05,P_(IFN-γ)0.001);ATRA能够降低ACh R特异性B细胞的抗体分泌能力(P0.01)。结论:ATRA不仅能抑制ACh R特异性T细胞功能,同时也能抑制ACh R特异性B细胞功能,其在MG的临床治疗中可能起治疗作用。  相似文献   
10.
Extracts of Prunella vulgaris have been shown to exert antiestrogenic effects. To identify the compounds responsible for these actions, we isolated the constituents of P. vulgaris and tested their individual antiestrogenic effects. Rosmarinic acid, caffeic acid, ursolic acid (UA), oleanolic acid, hyperoside, rutin and betulinic acid (BA) were isolated from the flower stalks of P. vulgaris var. lilacina Nakai (Labiatae). Among these constituents, UA and BA showed significant antiestrogenic effects, measured as a decrease in the mRNA level of GREB1, an estrogen-responsive protein; the effects of BA were stronger than those of UA. UA and BA were capable of suppressing estrogen response element (ERE)-dependent luciferase activity and expression of estrogen-responsive genes in response to exposure to estradiol, further supporting the suppressive role of these compounds in estrogen-induced signaling. However, neither UA nor BA was capable of suppressing estrogen signaling in cells ectopically overexpressing estrogen receptor α (ERα). Furthermore, both mRNA and protein levels of ERα were reduced by treatment with UA or BA, suggesting that UA and BA inhibit estrogen signaling by suppressing the expression of ERα. Interestingly, both compounds enhanced prostate-specific antigen promoter activity. Collectively, these findings demonstrate that UA and BA are responsible for the antiestrogenic effects of P. vulgaris and suggest their potential use as therapeutic agents against estrogen-dependent tumors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号