首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  国内免费   2篇
  完全免费   7篇
  2014年   2篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2005年   2篇
  2004年   1篇
  2003年   3篇
排序方式: 共有13条查询结果,搜索用时 31 毫秒
1.
长白山地区红松树干呼吸的研究   总被引:19,自引:2,他引:17       下载免费PDF全文
采用土壤呼吸气室于2003年5~10月测定了长白山阔叶红松林主要树种红松不同径阶不同方位的树干呼吸,同时监测了树干温度和林内温度.结果表明,树干呼吸速率具有明显的季节变化趋势,呈单峰曲线,8月出现最大值,2月呼吸速率最低.树干呼吸速率与树干温度具有显著幂指数关系,同时表现出大径阶树干呼吸速率与温度因子间曲线拟合效果好于小径阶红松.不同径阶树干呼吸速率均呈南面高于北面,并随树干径阶的减小南北面呼吸速率差异降低.不同径阶红松树干平均维持呼吸占总树干呼吸63.63%,红松树干径阶越大维持呼吸所占比例越大.依树干径阶大小顺序分别为66.76%、73.29%和50.84%.不同径阶红松树干呼吸Q10值在2.56~3.32之间,利用呼吸Q10值分别获得不同径阶树干Rt和Rm的季节变化趋势.因此,当估算生态系统呼吸时应考虑树干不同部位和不同径阶之间的差异.  相似文献
2.
林木非同化器官CO2 通量的测定方法及对结果的影响   总被引:14,自引:3,他引:11       下载免费PDF全文
王文杰 《生态学报》2004,24(9):2056-2067
林木非同化器官的气体交换特性是研究森林 CO2 通量过程中的一个必须考虑的因子 ,但是目前对于如何测定并没有标准方法。综述研究根系呼吸的 6类 10种方法、研究树干和树枝呼吸的 2类方法 ,并对各种方法的优缺点和最新研究成果进行了讨论。在此基础之上 ,收集前人研究结果 (6 5个根系呼吸占土壤总呼吸比例的数据 ,5 9个美国黄松 (Pinus ponderosa)树干呼吸数据 )对不同研究方法对测定结果的可能影响进行了评述。根系呼吸对土壤呼吸的贡献率在 5 %~ 90 %之间 ,而近 6 0 %的研究结果显示土壤呼吸中根呼吸所占比例为 4 0 %~ 70 %。不同研究方法测定的根系呼吸结果不同 ,其中 ,使用同位素标记法测定的根系呼吸占土壤总呼吸的比例最低 (4 0 %) ,而根系排除法和树干环剥法测定结果最高 ,较同位素标记法 (人工同位素标记法和天然同位素丰度法 )的测定结果高 33%,较根系分离法的测定结果高 7%,表明根系排除法和树干环剥法对根际环境的扰动破坏可能导致估计偏高 ,而根系分离法中根系死亡导致呼吸速率降低和根系受伤导致呼吸增加之间的补偿作用 ,仅仅使测定结果稍微偏高。对树干呼吸的统计结果显示 ,当以树干表面积为基准时 ,离体测定结果较活体测定结果平均高 74 %(p=0 .0 13) ;而当用边材体积为基准时 ,离体测  相似文献
3.
中国东北地区兴安落叶松林树干呼吸的研究   总被引:13,自引:0,他引:13  
树干呼吸是森林碳平衡估计中的一个重要项目同时还能够显示树木的活力。对于如何准确估计森林树干呼吸释放CO2总量还存在争论。在本项研究中,2001、2002连续两年在一个33年生的兴安落叶松(Larix gmelini Rupr.)人工林内对树干呼吸进行了测定,同时测定了不同高度树干呼吸、呼吸的日变化、同龄落叶松林内不同个体的树干呼吸以及相关生长状态因子、水分因子和温度因子。结果显示:1)树干上部的呼吸速率在不同季节都高于下部呼吸速率,树下温度的差异能够一定程度上解释这种差异;2)树干呼吸有午间降低的现象,上午的测定结果树干温度与树干呼吸速率紧密相关,而下午则温度依赖性很小,土壤、空气、小枝木质部水势、叶片蒸腾速率和气孔导度都显示下午植物水分亏缺下午较上午严重,呼吸的这种上下午温度相关性的差异可能受这种水分亏缺的影响;3)在同龄林内,树木个体生长状念包括平均生长速率和树冠投影面积与树干呼吸速率有显著相关关系,而树干温度与之相关性很小。幂指数模型和S曲线模型能够产生较好的拟合效果;4)树干呼吸季节变化明显,7月份出现最大值,但同一月份的年间差异较大。自然指数模型能够较好地拟合温度与树干呼吸的季节变化规律。Q10值在2.22(2001年)和3.53(2002年)之间,与以往研究的结果相当。从以上结果可以看出,通过单一的Q10值估计森林树干呼吸总量会产牛偏差,要想得到准确的估计,至少应该考虑生长状态的差异和水分状态的差异。  相似文献
4.
 温度系数(Q10,温度每变化10 ℃,呼吸速率的相对变化)不仅可以用来描述不同森林非同化器官(根系和树干)和土壤对温度升高的敏感性,并由此断定它们在全球变暖进程中的不同表现,而且是其呼吸总量定量估计中必不可少的参数。虽然目前已经进行了大量的研究,但不同研究者结论并不一致,影响我们对问题的整体把握。因此,有必要综合以往文献进行统计分析。该文综合大量文献,评述了林木非同化器官和土壤的Q10值频率分布、不同研究方法对Q10值的可能影响并探讨了它们对温度升高的敏感性。结果表明,不同非同化器官和土壤的Q10值差异较大,但具有相对稳定的分布中心范围。其中,土壤呼吸Q10值中,频率分布最集中的区域是2.0~2.5,占23%,其中超过80%的测定结果在1.0~4.0之间,中位数为2.74。 根系呼吸的Q10值,频率分布最集中的区域2.5~3.0,占33%,而大部分(>80%)的研究结果在1.5~3.0之间,中位数为2.40。树干呼吸的Q10值中,频率分布最集中的区域是1.5~2.0,占42%,而90%以上的测定结果在1.0~3.0之间,中位数为1.91。通过对比,发现不同非同化器官Q10值不同(树干<根系<根系与土壤共同体<去除根系土壤)。其中树干和根系的Q10值显著低于去除根系土壤的Q10值(p<0.05),表明土壤微生物活动对于未来全球变暖的反应要比木质化器官更敏感。此外,常绿植物的根系和树干呼吸的Q10值与落叶树木对应值差异不显著,说明同化器官叶片的着生时间长短对非同化器官Q10的影响不大。不同的CO2分析方法(碱吸收法,红外线测定技术和气相色谱方法)对土壤呼吸Q10值测定结果的影响不显著(p>0.10),根系分离方法(断根测定和壕沟隔断测定)也对根系呼吸的Q10值影响也不显著(p>0.10)。但是,与活体测定相比,离体测定树干呼吸显著提高了其Q10值。总体来看,不同林分相同非同化器官以及不同非同化器官呼吸的Q10值相对稳定但仍具有较大的差异性,研究方法也对结果产生一定影响,在进行呼吸总量的定量估计中应该注意这一点。今后研究的重点是进一步把影响森林非同化器官呼吸的外在因素和内在因素综合考虑于Q10值相关模型中,以便准确定量估计其呼吸总量,而研究难点是深入研究Q10值具有较大变异性的原因(如温度适应性)和内在机理以便更好的表征不同器官和生态系统组分对全球变暖的敏感性。  相似文献
5.
不同年龄兴安落叶松树干呼吸及其与环境因子关系的研究   总被引:8,自引:0,他引:8  
采用动态红外气体分析法研究了两个不同年龄兴安落叶松(Larix gmelinii Rupr.)人工林内落叶松树干呼吸速率的季节变化,并分析了树干呼吸速率与环境因子的关系.两个年龄落叶松树干呼吸速率均是从春季到夏季逐渐升高,高峰值出现在7月(成熟林)和8月份(幼林),之后明显下降.幼林落叶松的树干呼吸速率(变化范围是1.99~6.15 μmol*m-2*s-1)显著高于成熟林(变化范围是1.52~3.38 μmol*m-2*s-1)(P<0.05).树干温度对树干呼吸影响较大,树干呼吸速率与树干温度呈指数相关关系;成熟林和幼林树干呼吸的Q10值分别为1.96和3.44.当空气相对湿度较低时,树干呼吸速率与其关系无明显规律,但当空气相对湿度很高时,能大大促进树干的呼吸作用.  相似文献
6.
西双版纳三叶橡胶林树干呼吸特征   总被引:1,自引:0,他引:1       下载免费PDF全文
严玉平  沙丽清  曹敏 《生态学报》2009,29(4):1840-1848
采用红外气体分析法(IRGA)为期1a原位监测西双版纳三叶橡胶(Hevea brasiliensis)4个年龄段(7、15、27、40a)的树干呼吸情况,同时对每个年龄段树干监测2种高度(1.3 m-割胶部位、2.0 m-不割胶部位)和2个方向(南、北面)以及林内空气和树干1cm深温度.结果表明,4个年龄的树干呼吸有相同的季节规律,都是在雨季大于干季.林龄是影响橡胶树树干呼吸的一个重要因素,15、27a树干呼吸速率最大,分别为(4.989±0.278), (4.678±0.268) μmol·m-2·s-1,显著高于40a和7a树,40a树((3.753±0.205) μmol·m-2·s-1)显著大于7a树((2.299±0.129) μmol·m-2·s-1).所研究的高度和方向上树干呼吸速率无差异,割胶对树干表层破坏愈合后并不影响树干呼吸.树干呼吸与树干温度呈显著相关性,有良好的自然指数回归关系,Q10值为1.966~3.127,南北面Q10差异不明显,4个年龄段树干呼吸Q10值平均为2.452,大于已监测的热带树种.各年龄段橡胶林的主干(一级分枝以下部分树干)呼吸初步估算表明, 7、15、27a和40a橡胶树主干呼吸分别为1.74, 5.54, 7.53, 7.59 t C·hm-2·a-1.  相似文献
7.
树干呼吸是森林碳平衡估计中的一个重要项目同时还能够显示树木的活力.对于如何准确估计森林树干呼吸释放CO2总量还存在争论.在本项研究中,2001~2002连续两年在一个33年生的兴安落叶松(Larix gmelini Rupr.)人工林内对树干呼吸进行了测定,同时测定了不同高度树干呼吸、呼吸的日变化、同龄落叶松林内不同个体的树干呼吸以及相关生长状态因子、水分因子和温度因子.结果显示:1)树干上部的呼吸速率在不同季节都高于下部呼吸速率,树干温度的差异能够一定程度上解释这种差异;2)树干呼吸有午间降低的现象,上午的测定结果树干温度与树干呼吸速率紧密相关,而下午则温度依赖性很小,土壤、空气、小枝木质部水势、叶片蒸腾速率和气孔导度都显示下午植物水分亏缺下午较上午严重,呼吸的这种上下午温度相关性的差异可能受这种水分亏缺的影响;3)在同龄林内,树木个体生长状态包括平均生长速率和树冠投影面积与树干呼吸速率有显著相关关系,而树干温度与之相关性很小.幂指数模型和S曲线模型能够产生较好的拟合效果;4)树干呼吸季节变化明显,7月份出现最大值,但同一月份的年间差异较大.自然指数模型能够较好地拟合温度与树干呼吸的季节变化规律.Q10值在2.22(2001年)和3.53(2002年)之间,与以往研究的结果相当.从以上结果可以看出,通过单一的Q10值估计森林树干呼吸总量会产生偏差,要想得到准确的估计,至少应该考虑生长状态的差异和水分状态的差异.  相似文献
8.
 树干呼吸是森林生态系统碳平衡的重要组成部分,它每年消耗碳同化总量(NPP)的11%~33%。受测定技术所限,过去对树干呼吸的研究未能引起足够的重视。近十几年来,由于大气CO2温室气体浓度的持续升高,树干呼吸已成为研究的热点。测定树干呼吸的方法较多,早期一般采用气体交换法和密闭方法,最近利用便携式光合测定系统(Li-Cor6400)或土壤碳通量测量系统(Li-8100)对树干呼吸采用开路系统测定方法。大量研究结果表明 :1)树干呼吸的日变化呈双峰型曲线,即从早晨开始,树干呼吸速率随温度的上升而增加,到午间有所降低,之后逐渐增加,达到峰值后又逐渐降低。2)树干呼吸的季节动态为:生长季的树干呼吸速率明显高于非生长季,即从春季到夏季树干呼吸速率呈持续升高态势,高峰值出现在7或8月,尔后逐渐下降。树干呼吸活动是一个复杂的生物学过程,其影响因子较多。直接影响因子有气象因子(如温度、湿度和CO2浓度)和生物因子(如树种、树龄、径阶、边材积和树干氮含量等);而纬度、海拔和地形因子通过影响气象因子或生物因子而间接影响树干呼吸。诸多因子中,树干温度对树干呼吸的贡献最大(Q10可描述树干呼吸对温度升高的敏感性)。树干呼吸机理及其影响因子乃是今后研究的主要内容,一方面要采用统一的测量方法和技术,另一方面要综合考虑影响树干呼吸的内外因素,建立树干呼吸的相关模型,为构建森林生态系统碳循环模型、了解森林生态系统碳收支状况及其对大气CO2浓度变化的贡献和对全球变化的响应提供理论依据。  相似文献
9.
树干表面和土壤CO2释放通量是森林生态系统碳循环的重要组成部分,但修枝措施对其如何影响还不太清楚。本文以杉木纯林为研究对象,通过修枝处理(对照、轻度修枝和重度修枝)改变光合产物供应,探讨其对树干表面CO2通量和土壤CO2通量产生的影响。在研究区内使用LI-6400-09便携式光合系统连续一个月测量树干表面和土壤CO2通量。结果表明:修枝对树干表面CO2通量并没有显著影响,尽管日最大液流略有下降。修枝轻微降低了土壤CO2通量,轻度修枝和重度修枝的土壤CO2通量相对于对照分别下降了11.8%和17.9%,但统计并不显著。因此,修枝对树干表面和土壤CO2通量的短期影响有限。  相似文献
10.
树干呼吸(RS)的CO2通量由三部分组成,即液流中CO2运输通量(FT)、储存通量(△S)和树干表面CO2释放通量(EA)。其中木质部液流中CO2的运输(FT)在植物的气体交换中起到非常重要的作用,是茎、枝呼吸作用测定中非常重要且未予说明的组分。为探明兴安落叶松树干各通量成分对树干呼吸的贡献,采用红外气体分析法(IRGA)原位连续测定树干表面CO2释放通量,同时测定树干液流速度及树干温度,通过Arrhenius方程拟合树干呼吸与树干温度的关系,进而通过质量平衡法计算RS和FT、△S。结果表明:EA,FT和△S占RS的比例是动态变化的,EA与树干内部CO2通量密切相关,FT和△S可影响EA,在24 h周期内EA占总呼吸量的65.10%~100%,FT占总呼吸量的1.86%~29.46%,储存通量占总呼吸量的0.42%~5.44%。个体之间,树干呼吸的各通量成分所占的比例不同,FT和△S是木本组织呼吸与树干表面CO2释放通量之间差别的重要影响因子,液流速度对液流中CO2运输通量(FT)的影响在树木个体间也存在差异。  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号