首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   3篇
  国内免费   6篇
  2024年   1篇
  2023年   1篇
  2017年   1篇
  2013年   2篇
  2012年   3篇
  2011年   1篇
  2006年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
植物在进化过程中针对干旱、高盐和高低温等逆境胁迫形成了多种适应机制, 植物类受体激酶作为重要的细胞信号传递分子在植物生长和抗逆境胁迫中发挥着重要功能。该文发现一个具有S位点的类受体激酶基因OsSRL可能参与水稻(Oryza sativa)的干旱胁迫反应。利用RNAi技术降低OsSRL的表达水平后, 转基因植株抗旱性增强, 并表现出幼苗存活率、叶绿素含量及鲜重增加等表型。进一步的研究表明30%PEG和100 μmol·L–1ABA可诱导OsSRL基因表达, 利用RNAi降低其表达导致干旱诱导基因RAB16A及LEA3表达水平明显增加。表达模式分析发现OsSRL在胚芽、胚根、根、茎节以及花中表达。以上结果表明, OsSRL表达水平的降低增强植物的干旱耐受性, 其作为一个S-位点样类受体激酶可能参与了水稻对干旱胁迫的反应。  相似文献   
2.
水稻类受体激酶OsCR4的抗体制备及特异性检测   总被引:3,自引:0,他引:3  
运用生物信息学的方法对水稻类受体激酶OsCR4的抗原性进行分析,选取胞外部分片段与GST融合,在细菌大规模诱导该融合蛋白,利用GST sepharose进行亲和层析纯化,所得蛋白使用SDS-PAGE结合KCl/DTT染色切胶的方法得到收集。以此融合蛋白作为抗原免疫新西兰兔,获得了1:512,000效价的多克隆抗体,该抗体可特异识别水稻叶片微粒体组分中的OsCR4蛋白。  相似文献   
3.
染色质重塑是真核生物表观遗传调控的重要方式.通过对染色质物理结构的调节,染色质重塑在高等动植物干细胞的自我更新及分化、器官和个体发育以及肿瘤发生等多种生物学过程中发挥重要作用.近年来,高等动植物染色质重塑方面的研究已经成为表观遗传学研究领域的热点.本综述总结近年来有关高等动植物染色质重塑的重要研究报道,介绍了染色质重塑的结构机制、分析比较了高等动植物染色质重塑复合体的组成及其生物学功能的多样性,并着重综述了高等植物SWI/SNF染色质重塑复合体各组分在调控植物发育与逆境生长等方面的功能,以期为今后植物中染色质重塑的研究提供启示.  相似文献   
4.
刘玉良  郑术芝 《植物学报》2017,52(1):113-121
水稻具有悠久的栽培历史,是重要的粮食作物,养育了1/3的世界人口。现代栽培稻(Oryza sativa)由野生稻(O.rufipogon)驯化而来,产量是驯化筛选的关键性状之一。株型、穗型和种子大小是决定水稻产量的重要性状,这些性状在水稻栽培过程中均受到了定向筛选。该文以水稻产量性状为核心,综述了株型、穗型和种子大小等性状的驯化分子机理研究进展,讨论了水稻产量驯化研究中存在的问题,展望了驯化性状和相关基因的研究前景,以期为水稻产量相关性状的驯化机理研究和水稻育种工作提供有价值的线索。  相似文献   
5.
开花是高等植物发育过程中一个非常重要的转化过程,它能够保证植物的正常发育和后代的延续,并且有重要的农业价值和观赏价值[1].开花时间的调控是一个非常复杂的过程,受到自身发育信号和外部环境因素的共同影响[2-3].FLC是拟南芥开花调节过程中的中心抑制因子,其在拟南芥顶端分生组织和叶片维管束的伴胞细胞中均有表达,并且这两个部位的FLC对开花时间都有重要的调节作用[4].目前已知的多数影响开花的通路都通过调节顶端FLC的表达来调控植物开花时间,关于伴胞细胞中的FLC如何被调控的研究还非常少[1, 3]. 在动植物中都存在一类具有JmjC结构域的蛋白质,是一类保守的组蛋白脱甲基化酶[5].我们实验室最近的工作表明,JMJ18是一个受植物自身发育调节的H3K4脱甲基化酶,JMJ18主要在伴胞细胞中表达,通过特异调节伴胞细胞中的FLC调控植物开花时间[6]. Yang等[6]实验证实在体外全长的JMJ18可以特异性地以H3K4m3的多肽为底物,脱掉其上一个甲基生成H3K4m2.在拟南芥中,JMJ18主要在伴胞细胞中表达,并且表达水平受到植物自身发育进程的调控[4].JMJ18功能缺失突变体呈现弱的晚花表型,而JMJ18的超表达植株呈现明显的早花表型,说明JMJ18参与了拟南芥开花时间的调控[4].尽管多个具有JmjC结构域的组蛋白脱甲基化酶,如 JMJ14、ELF6/JMJ11、REF6/JMJ12等都参与了拟南芥开花时间的调节,但是机制都不太清楚[5, 7],并且目前没有发现可以直接调控FLC的JmjC蛋白.Yang等的实验证实JMJ18可以结合到FLC的染色质上,通过降低FLC的染色质H3K4m3和H3K4m2修饰抑制FLC表达.FLC表达水平的降低导致FT表达的释放,促进FT在伴胞细胞中积累.积累的FT从伴胞细胞进入筛管组织,进而运输到顶端分生组织,与顶端分生组织特异性表达的bZIP转录因子FD直接相互作用,通过调节下游基因SOC1和AP1调控植物开花进程(图1). 最近的研究发现,植物开花时间除了受到春化作用、自主途径、光周期途径、GA途径等调控以外,还可以通过自身年龄衡量因子miR156和其靶基因SQUAMOSA PROMOTER BINDING-LIKE (SPLs)调节开花进程[8].Yang等实验证实:JMJ18主要在韧皮部的伴胞细胞表达.并且同miR156类似,在植物营养生长时期,JMJ18随着发育进程的深入表达水平逐渐升高.SUC2启动子驱动JMJ18在维管伴胞细胞中表达时也出现早花表型并且依赖于FT.这些研究结果表明,同miR156类似,JMJ18受植物自身发育调节,也可能作为自身年龄衡量因子调控植物开花时间,不同点是JMJ18是通过组蛋白修饰直接调节FLC表达调控开花时间的自身年龄衡量因子.即可能有两条感受自身年龄的途径:miR156-SPLs和JMJ18-FLC/MAFs途径,让人感兴趣的是两个因子都是表观遗传调控因子,而且在每个途径中均是前者负调控后者,而且后者均为一个转录因子基因家族,这两个途径最后都调控FT表达.这两个途径之间的关系也是一个有待于研究的科学问题,这可能会对于我们理解自身年龄衡量因子在植物开花进程中的作用有一定的启示.  相似文献   
6.
在植物的生长发育过程中,植物激素发挥着重要的作用. 最新研究对油菜素内酯、赤霉素两类植物激素与光的信号通路共同调控植物的细胞伸长和光形态建成的分子机制给予了精确的阐述,这也为提高农作物产量提拱了理论基础.  相似文献   
7.
钙调素作为真核细胞的重要信号蛋白,在真核生物正常及逆境条件下的生长发育中发挥着重要作用.研究报道钙调素可促进离体培养的高等动植物细胞的增殖,但有关钙调素蛋白在植物体内的细胞增殖功能尚未见报道.特别是拟南芥基因组中存在7个编码经典钙调素亚型的基因,多数编码基因的功能有待进一步探究.首先借助常用的钙调素拮抗剂W7进行药理学实验,结果表明,野生型拟南芥幼苗根的生长受到了明显的抑制,根尖分生区的面积变小、细胞数目明显减少,根尖分生区中细胞分裂标记基因CYCB1;1的表达受到了明显抑制,这表明在根尖分生区W7可能通过对活性钙调素的抑制作用影响了根尖分生区域的细胞增殖,而根尖分生区正常的细胞增殖需要一定量活性钙调素蛋白的存在.脱落酸(ABA)是植物逆境下的重要激素,在植物种子萌发及幼苗生长发育中发挥着重要作用,W7存在下的拟南芥幼苗对ABA的敏感性下降.借助反向遗传学手段获得了拟南芥中三个编码典型钙调素蛋白基因的三重缺失突变体cam234,蛋白质印迹结果表明三重缺失突变体中钙调素蛋白的含量明显降低.相同培养条件下与野生型相比,三重突变体幼苗根长变短,并且幼苗对ABA敏感性也表现下降趋势,暗示着这三个基因编码的钙调素蛋白可能参与了根分生区域细胞增殖过程及幼苗对脱落酸的敏感性反应,讨论了钙调素的细胞增殖功能及与幼苗对脱落酸的敏感性反应间的关系.  相似文献   
8.
染色质相关蛋白在真核生物DNA复制、基因转录调控等过程中起着非常重要的作用.前期报道拟南芥叶花相关蛋白(leaf and flower related,LFR)蛋白定位于细胞核中, 其缺失突变体在叶、花发育及育性等方面存在着许多表型,但LFR蛋白的自身特征尚有待进一步探究.酵母单杂交实验表明,酵母转录因子GAL4 的DNA结合域与全长LFR的融合蛋白(GBD-LFR)具有转录辅激活活性,LFR的C端至少有2个犰狳蛋白(ARM)重复结构域及完整N端对于其转录辅激活活性是必需的.但在野生型拟南芥原生质体中,与典型的转录激活因子相比,GBD-LFR的转录辅激活活性并不明显.缺失或突变LFR与黄色荧光蛋白(YFP)的原生质体亚细胞定位的荧光显微观察表明,N端的1~25位氨基酸,特别是其中第22位的赖氨酸和第4、23以及25位精氨酸影响其核定位.利用激光共聚焦显微镜观察共表达黄色或青色荧光(CFP)融合蛋白的细胞核内分布,结果表明LFR与染色质结构蛋白组蛋白H4及染色质结合蛋白HMGA有一定的核内共定位.这些结果表明LFR可能作为一个染色质相关的蛋白质,在拟南芥的生长发育中发挥重要作用.  相似文献   
9.
糖基化是生物体中最重要的反应之一,通过糖基化作用可以形成具有多种生物功能的糖缀合物。糖核苷酸作为Leloir型糖基转移酶催化的转糖基反应的糖基供体,在聚糖和糖缀合物的生物合成中必不可少。然而,糖核苷酸的成本较高、可用性有限等因素阻碍了生物催化级联反应在工业中大规模的应用。因此,人们越来越关注糖核苷酸的合成策略,以实现其在多种领域的广泛应用。目前,糖核苷酸及其衍生物的化学合成方法已经建立起来,但合成反应的产量通常很低,而酶法(化学-酶法)和细胞工厂法在合成糖核苷酸过程中具有显著优势。本文主要围绕哺乳动物中常见的9种糖核苷酸,概述了其类型和结构、酶法(化学-酶法)和细胞工厂法两种制备方法。伴随糖核苷酸的高效合成,其多种功能逐渐被发现和应用。本文进一步概述了糖核苷酸在聚糖及糖缀合物合成、糖基转移酶生化性质表征以及生物正交标记策略等方面的应用,对生物化学、糖生物学的研究以及相关医药产品的研发具有十分重要的意义。  相似文献   
10.
铁死亡是铁依赖性的脂质过氧化作用驱动的一种独特的细胞死亡方式。与细胞凋亡、自噬性程序性细胞死亡和细胞焦亡等细胞死亡方式不同,铁死亡的主要特征是线粒体形态的改变,包括线粒体膜变得致密并伴随体积变小,以及外膜破裂和线粒体嵴的减少或消失。线粒体作为细胞代谢的核心,是铁代谢、脂质代谢和能量代谢中的重要细胞器。但是,线粒体如何参与铁死亡并在其进程中发挥怎样的作用仍存在争议。本文综述了现有对铁死亡发生和防御机制的认识,并且对线粒体在铁死亡进程中的促进和抑制作用进行了描述和分析,包括线粒体三羧酸循环和糖酵解、线粒体活性氧、线粒体脂质代谢对铁死亡的积极驱动过程,以及通过线粒体铁蛋白、线粒体二氢乳酸脱氢酶等分子对线粒体脂质过氧化物解毒并抑制铁死亡的作用机制。最后补充说明了其他涉及铁死亡的线粒体分子调控机制。本文通过综述线粒体在铁死亡进程中的最新研究进展,旨在对深入了解铁死亡中线粒体的功能及其对铁死亡发生发展的作用机制,为细胞生物学基础研究及临床相关疾病的研究提供理论依据和参考。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号