首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   14篇
  国内免费   16篇
  2022年   1篇
  2021年   1篇
  2020年   3篇
  2019年   3篇
  2018年   4篇
  2017年   4篇
  2016年   2篇
  2015年   3篇
  2014年   6篇
  2013年   2篇
  2012年   2篇
  2010年   4篇
  2009年   1篇
  2008年   6篇
  2007年   1篇
  1983年   1篇
  1958年   1篇
排序方式: 共有45条查询结果,搜索用时 14 毫秒
1.
《植物生态学报》2016,40(9):958
Large scale herbivorous insect outbreaks can cause death of regional forests, and the events are expected to be exacerbated with climate change. Mortality of forest and woodland plants would cause a series of serious consequences, such as decrease in vegetation production, shifts in ecosystem structure and function, and transformation of forest function from a net carbon sink into a net carbon source. There is thus a need to better understand the impact of insects on trees. Defoliation by insect pests mainly reduces photosynthesis (source decrease) and increases carbon consumption (sink increase), and hence causes reduction of nonstructural carbohydrate (NSC). When the reduction in NSC reaches to a certain level, trees would die of carbon starvation. External environment and internal compensatory mechanisms can also positively or negatively influence the process of tree death. At present, the research of carbon starvation is a hotspot because the increase of tree mortality globally with climate change, and carbon starvation is considered as one of the dominating physiological mechanisms for explaining tree death. In this study, we reviewed the definition of carbon starvation, and the relationships between the reduction of NSC induced by defoliation and the growth and death of trees, and the relationships among insect outbreaks, leaf loss and climate change. We also presented the potential directions of future studies on insect-caused defoliation and tree mortality.  相似文献   
2.
为更好地开发和利用生漆资源,探寻生漆中主要有效成分漆酚的抗氧化性能,为生漆的深加工提供理论依据和参数。分别应用丙酮提取中国和越南生漆,对得到的漆酚粗提物中的漆酚含量进行测定,建立了阳性对照组Vc和二丁基羟基甲苯(BHT)基础的DPPH、ABTS及O2-.法,对提取物抗氧化性能进行测试;在此基础上,结合紫外光谱分析了中国和越南生漆中漆酚含量及结构差异性,并初步分析其抗氧化的构效关系。结果显示,各地生漆中漆酚提取物具有强的抗氧化活性:中国毛坝生漆提取物抗氧化活性最强,其次是越南红漆和中国小木漆;紫外光谱分析亦表明毛坝生漆中含有丰富的不饱和键可能与其较强的抗氧化性相关。  相似文献   
3.
《植物生态学报》2014,38(5):499
采用砂培方法, 在温室内将一年生核桃(Juglans regia)嫁接苗木和绿豆(Vigna radiata)进行间作, 研究绿豆对核桃苗木生长、水分平衡和光合特性的影响。该研究设有5种处理, 即: 对照(核桃单作, 正常供应氮素); 核桃单作, 不添加氮素; 核桃绿豆间作, 不添加氮素; 核桃绿豆间作, 正常供应氮素; 绿豆单作, 不添加氮素。结果显示: 种植绿豆可以增加土壤氮含量和核桃茎内氮含量, 但对核桃叶和根系中的氮含量影响不明显。种植绿豆显著增加不施氮核桃的高生长和直径生长, 但降低了正常供氮核桃的生长。无论种植绿豆与否, 不供氮处理降低了核桃的总叶面积, 提高了根冠比。核桃叶片气孔气体交换对各处理的响应和生长有相同的趋势。缺氮显著降低了核桃叶柄在中午的导水率、提高了导水损失率; 种植绿豆显著提高不供氮核桃的导水率而且明显降低了其导水损失率。然而, 种植绿豆使正常供氮的核桃降低了导水率, 加剧了导水损失率。同时, 绿豆受到间作的竞争压力, 产量和生物量有所下降。由研究结果可知, 在贫瘠的土壤上, 固氮植物绿豆改善了间作的核桃的氮营养, 有益于核桃木质部发育、水分平衡以及光合代谢。但是在氮充足的土壤中, 种植绿豆反而降低了核桃的水分供应, 影响其气体交换和生长。  相似文献   
4.
木本植物木质部解剖特征与水分运输和干旱适应策略密切相关,但目前对华北低山丘陵区常用树种这方面的研究仍然不足。为研究这一地区植物木质部解剖特征与抗旱性的关系,研究以抗旱树种和非抗旱树种各5种为研究对象,通过测定与木质部横截面导管、薄壁组织相关的大量解剖学性状和非结构性碳浓度,比较两类树种木质部解剖特征的差异和解剖性状间的关联,以探究这些树种水力学的干旱适应策略差异。结果显示:1)10个树种的16个木质部性状均有较大变异性;2)两类树种间的平均导管直径和导管密度无显著差异,但抗旱树种导管壁厚度、最大导管直径、旁管薄壁组织比例和轴向薄壁组织比例以及非结构性碳(NSC)浓度显著大于非抗旱树种;3)抗旱树种的导管壁厚度与平均导管直径、最大导管直径和潜在最大导水率均呈显著正相关关系,最大导管直径与潜在最大导水率呈显著正相关关系,但非抗旱树种不存在这些关系。本研究抗旱树种同时具有较大的最大导管直径和较厚的导管壁,在保证较高的水分运输效率的同时又具备一定的抗栓塞能力,较多的旁管薄壁组织和NSC也为抗旱树种提供了更大的木质部水储存和栓塞修复能力。  相似文献   
5.
低覆盖度下两种行带式固沙林内风速流场和防风效果   总被引:2,自引:0,他引:2  
研究在风速为10m/s和15m/s的风洞实验条件下,覆盖度为20%和25%的单行一带和两行一带模式乔木固沙林内的水平和垂直空间的风速变化情况,达到对两种不同模式的风速流场和防风效果进行比较分析的目的。通过分析得出:两种配置模式都形成了风影区和风速加速区相互组合的复杂的水平流场结构。两种模式对垂直空间风速影响相近,根据对不同高度风速的不同影响划分为微变化层(20-35 cm)、显著变化层(6-12 cm)和稳定变化层(0.4-3 cm)层次,两种模式在这几个层次风速表现出相同的变化规律。两行一带模式在第一带前降低水平空间风速的效果低于单行一带模式,第一带后高于后者。降低垂直空间风速规律为:对0.4-50 cm高度的风速均有一定的降低作用,0.4-12 cm高度的风速的降低效果较显著,且两行一带模式降低近地表(0.4 cm)风速的效果要高于单行一带模式。  相似文献   
6.
毛白杨悬浮细胞系的建立及再生植株的获得   总被引:1,自引:0,他引:1  
以毛白杨基因型TC152无菌苗为材料,研究毛白杨悬浮细胞系建立与植株再生,结果表明,通过悬浮培养和固体培养两种方法诱导毛白杨悬浮细胞分化不定芽,最终获得无菌生根苗。愈伤组织在MS+1.5mg·L-12,4-D+30g·L-1蔗糖的液体培养基中振荡培养,12d可建立悬浮细胞系;悬浮细胞系继代培养基为MS+0.8mg·L-12,4-D+30g·L-1蔗糖,继代周期为7d,悬浮细胞在MS+1.0mg·L-16-BA+0.1mg·L-1NAA+0.5~1.0mg·L-1ZT+30g·L-1蔗糖培养基中悬浮培养,可分化大量不定芽,每个培养瓶中可得到40~50个芽,个别不定芽玻璃化;不定芽在1/2MS+0.6mg·L-1IBA+20g·L-1蔗糖+5.5g·L-1琼脂培养基上可分化不定根。悬浮细胞通过固体平板培养增殖为愈伤组织块后,在MS+1.0mg·L-16-BA+0.1mg·L-1NAA+1.0mg·L-1ZT+30g·L-1蔗糖+5g·L-1琼脂的固体培养基上,不定芽分化率可达到70.00%。  相似文献   
7.
毛竹根际可培养微生物种群多样性分析   总被引:1,自引:0,他引:1  
[目的]为了了解天然毛竹林根际可培养微生物种群的多样性信息,[方法]采用稀释平板法,对浙江天目山和重庆缙云山天然毛竹林根际细菌和放线菌进行了分离,并对其16S rDNA序列进行了分析.[结果]分别从天目山和缙云山天然毛竹林根际分离得到51株和31株菌落形态差异的细菌和放线菌.16S rDNA序列分析表明,天目山和缙云山毛竹根际细菌主要包括厚壁菌门(Firmicutes,分别为40%和58%)、放线菌门(Actinobacteria,分别为36.7%和10.52%)、变形菌门-亚群(Alphaproteobacteria,分别为10%和5.26%)和变形菌门 --亚群(Gammaproteobacteria,分别为10%和26.32%),其中芽孢杆菌属(Bacillus sp.)为共同的优势菌属(分别为34.38%和42.11%).分离的菌株中,B188、B171和B152等6株与GenBank中已报道16S rRNA基因序列的相似性从90%到96%不等,可能代表着新属或种.[结论]这表明,天然毛竹林根际具有较为丰富的可培养微生物种群多样性,并存在一些潜在的新的微生物菌种资源.  相似文献   
8.
本文考察了不同的干燥预处理手段(烘箱干燥和真空冷冻干燥)及减压内部沸腾法中各因素(真空度、温度、液料比和提取时间等)对壶瓶枣多糖及蛋白质得率的影响。实验结果表明:干燥方式对原料枣粉的色差和多糖、蛋白质含量均有显著影响,对含水量无明显影响;真空冷冻干燥所得的枣粉色差小、多糖含量高、蛋白质含量低,综合考虑,选用真空冷冻干燥作为原料预处理手段;减压内部沸腾法最佳工艺参数为体系内温度60℃,液料比50∶1(mL∶g),提取时间30 min,此时外界温度为71℃,真空度为80 kPa,此条件下多糖及蛋白质得率分别为26.05 mg/g和2.14 mg/g;与传统热浸提相比,有效物质多糖得率提高了16.66%。  相似文献   
9.
通过自由基清除能力、还原力和平板二倍稀释法实验,评价了鼠尾草酸的抗氧化活性、抑菌活性。结果显示:相同浓度的鼠尾草酸抗氧化活性明显高于合成抗氧化剂PG、BHT、BHA、VE,略低于THBQ,其清除DPPH的IC50值为2.53μg/m L,清除ABTS的IC50值为51.58μg/m L。抑菌实验表明:鼠尾草酸具有广谱抗菌性,特别是大肠埃希氏杆菌、绿脓假单胞菌,其最低抑菌浓度分别为4、2μg/m L,表现出了比新洁尔灭、氨苄青霉素钠、红霉素更好的抑菌活性;对于肺炎克雷伯氏菌,则表现出了与红霉素同样的抑菌效果,优于新洁尔灭和氨苄青霉素钠。  相似文献   
10.
浑善达克沙地6种灌木生物量模拟   总被引:2,自引:0,他引:2  
在干旱半干旱区,乔木比较稀疏或难以存活,灌木往往在植被群落中占有很大的优势地位,其生态功能及生态学意义尤其值得重视。浑善达克沙地疏林草地是沙地顶级植物群落,其中乔木稀疏分布,而灌木在沙甸以及沙陇背风坡呈密集分布。灌木在固定沙丘、改良土壤、提供栖息地等方面具有重要的生态意义,其生物量组成也在沙地植被群落中占有很大比重。已往的研究中,灌木相比乔木通常处于次要地位,对灌木的研究尚不充分,灌木生物量的模拟方法亦多采用乔木生物量的模拟方法。然而灌木形态结构与乔木有明显差异,专门针对灌木的生物量模拟方法研究尚不多见。以6种沙地灌木为样本,基于异速生长模型,对比了若干地表测量指标对灌木生物量的预测能力,其中设计了一种更贴近灌木实际形态的圆台体积作为新的预测指标。研究结果表明:(1)在单因素指标中,相比高度和地径,冠幅与灌木生物量的相关性更强。(2)相比单因素指标,复合指标与灌木生物量之间的相关性更强。其中冠幅相关的复合指标更优于地径相关的复合指标。这预示着冠幅以及冠幅相关的复合指标对灌木生物量具有较好的预测能力。(3)圆台体积能进一步提高对灌木生物量的预测能力。相关分析和拟合评价结果显示,圆台体积与灌木生物量的相关性更强,拟合误差较小,并且对于不同的灌木种类,其相关性和拟合精度表现出较高的稳定性。这意味着圆台体积对于不同的灌木种类,均具有较好的生物量预测效果。因此建议,在灌木属性测量较为充分的情况下,圆台体积是更为理想的预测指标,而在测量不充分情况下,冠幅及其相关复合指标更适宜进行灌木生物量预测。研究结果最终建立了6种沙地灌木的圆台体积-生物量的异速生长模拟方程,为进一步研究沙地灌木的碳储量以及灌木在半干旱植物群落中的生态意义提供科学基础。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号