首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  完全免费   2篇
  2017年   3篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2009年   1篇
  2008年   2篇
  2007年   4篇
  2005年   1篇
排序方式: 共有15条查询结果,搜索用时 46 毫秒
1.
The parasitoid Aphidius colemani developed normally (approximately 90% adult emergence) when its cotton aphid (Aphis gossypii) host was treated with Verticillum lecanii conidia 5 or 7 days after parasitization. Fungus exposure 1 day before or up to 3 days after parasitization, however, reduced A. colemani emergence from 0 to 10%. Also, numbers of spores and mycelial fragments in aphid homogenates were much higher in aphids exposed to the fungus up to 3 days after parasitization than in aphids treated after 5 or 7 days. Our results suggest that the parasitoid and fungus may be used together for aphid biocontrol as long as fungus applications are timed to allow late-instar development of the parasitoid.  相似文献
2.
Detached leaf disc bioassays were conducted against cucumber powdery mildew and three species of aphid with three entomopathogenic species of Lecanicillium; Lecanicillium longisporum (Vertalec®), Lecanicillium attenuatum (CS625), and an unidentified isolate (DAOM198499). The three Lecanicillium species had high virulence against the aphids Myzus persicae, Macrosiphum euphorbiae and Aulacorthum solani with the exception of DAOM 198499, which demonstrated reduced virulence to A. solani with an LT50 of 6.4 days. Otherwise, LT50 ranged between two and four days. Suspensions of conidia and blastospores of the Lecanicillium species were also applied onto 15 mm leaf discs dissected from cucumber plants previously inoculated with Sphaerotheca fuliginea. Powdery mildew did not develop when the Lecanicillium applications were made one and eight days after S. fuliginea inoculations. When Lecanicillium was applied to highly infected leaf discs 11 and 15 days after S. fuliginea inoculation, the application suppressed subsequent production of S. fuliginea spores as compared to the controls. These results suggest the potential of a dual role for Lecanicillium spp. as microbial control agents against aphids and powdery mildew.  相似文献
3.
4.
Fungi in the genus Lecanicillium (formerly classified as the single species Verticillium lecanii) are important pathogens of insects and some have been developed as commercial biopesticides. Some isolates are also active against phytoparasitic nematodes or fungi. Lecanicillium spp. use both mechanical forces and hydrolytic enzymes to directly penetrate the insect integument and the cell wall of the fungal plant pathogen. In addition to mycoparasitism of the plant pathogen, the mode of action is linked to colonization of host plant tissues, triggering an induced systemic resistance. Recently it was demonstrated that development of Lecanicillium hybrids through protoplast fusion may result in strains that inherit parental attributes, thereby allowing development of hybrid strains with broader host range and other increased benefits, such as increased viability. Such hybrids have demonstrated increased virulence against aphids, whiteflies and the soybean cyst nematode. Three naturally occurring species of Lecanicillium, L. attenuatum, L. longisporum, and an isolate that could not be linked to any presently described species based on rDNA sequences have been shown to have potential to control aphids as well as suppress the growth and spore production of Sphaerotheca fuliginea, the causal agent of cucumber powdery mildew. These results suggest that strains of Lecanicillium spp. may have potential for development as a single microbial control agent effective against several plant diseases, pest insects and plant parasitic nematodes due to its antagonistic, parasitic and disease resistance inducing characteristics. However, to our knowledge, no Lecanicillium spp. have been developed for control of phytopathogens or phytoparasitic nematodes.  相似文献
5.
The commercial preparation of Lecanicillium longisporum, Vertalec® was evaluated for simultaneous suppression of cotton aphid and cucumber powdery mildew on potted cucumber plants. Vertalec was applied onto cucumber plants that had been infested with either cotton aphid, spores of Sphaerotheca fuliginea or both. Irradiation-inactivated Vertalec (II Vertalec) was also applied to an identical series of cucumber plants as a control. The Vertalec was highly pathogenic against adult aphids with an LT50 of 6.9 days. II Vertalec did not affect aphid survival. Application of either active or II Vertalec significantly suppressed spore production of S. fuliginea compared to the water control. For dual control assays, Vertalec applications were made one day after infestation of both aphid and S. fuliginea onto potted cucumbers. Fifteen days after the Vertalec treatments, the numbers of surviving aphids and the production of powdery mildew spores were significantly reduced compared with the water control. The presence of aphids also suppressed S. fuliginea spore production. Our results suggest the potential of a dual role for Vertalec as a microbial control agent of aphids and powdery mildew in cucumber.  相似文献
6.
Abstract.  The mechanisms and strategies for winter survival of the black rice bug Scotinophara lurida are investigated along with the relationship between cold hardiness and diapause. The ability of S. lurida to survive subzero temperatures varies depending on developmental stage, temperature and exposure duration. Mean supercooling point (SCP) varies from –7.6 to –10.7 °C with developmental stage, but is not significantly different between stages examined. The SCP also varies with season, being lowest in January and increasing rapidly in February and remaining almost at the same level (–7.3 to 9.6 °C) until April The osmolality of haemolymph of field-collected S. lurida adults rises dramatically from 53.9 mOsm kg−1 in August to 75.3 mOsm kg−1 in December, and then declines linearly to 57.0 mOsm kg−1 in May. Field-collected S. lurida adults show a peak glucose content in October, glycerol content in November and trehalose content in December. Only trehalose content decreases after the application of the juvenile hormone analogue, fenoxycarb, suggesting that trehalose is a cryoprotectant during diapause. These various physiological and biochemical traits related to cold tolerance in S. lurida may be, at least in part, under the control of juvenile hormone through the reproductive diapause programme.  相似文献
7.
8.
Jeong Jun Kim 《BioControl》2007,52(6):789-799
The activity of entomopathogens on insect pests has been investigated for many species but the influence of entomopathogenic fungi on factors other than mortality relating to population increase has not been frequently studied. The influence of Lecanicillium attenuatum CS625 (=Verticillium lecanii CS625) on development and reproduction of cotton aphid (Aphis gossypii) was investigated. A conidia suspension of the isolate was applied onto first instar nymphs. Increased spore concentration did not significantly affect each nymphal stage, total nymphal period, pre-reproductive period and the age of first larviposition. A significant dose effect on reduction of life span, reproductive period and fecundity was observed in 1st and 3rd instars after spore application. When conidia were applied to 1st instars, life span was significantly reduced to 10.8 and 8.4 days at 1 × 104 and 1 × 108 conidia/ml, respectively from 12.2 days in the control. During the life span, total fecundity was 41 ± 7.3, 26 ± 0.8 and 22 ± 5.7 nymphs per female at 1 × 104, 1 × 106 and 1 × 108 conidia/ml, respectively compared with 51 ± 2.0 nymphs per untreated female. Reproduction period was also significantly shortened with increasing spore concentration. Application of spores to 3rd instars showed a similar trend. However, daily fecundity of individual aphids was not affected by spore dose. It was concluded that the isolate of L. attenuatum is able to affect populations of cotton aphid by reducing life span and total fecundity as well as by killing the aphids directly.  相似文献
9.
The gut bacterial community of wood-feeding beetles has been examined for its role on plant digestion and biocontrol method development. Monochamus alternatus and Psacothea hilaris, both belonging to the subfamily Lamiinae, are woodfeeding beetles found in eastern Asia and Europe and generally considered as destructive pests for pine and mulberry trees, respectively. However, limited reports exist on the gut bacterial communities in these species. Here, we characterized gut bacterial community compositions in larva and imago of each insect species reared with host tree logs and artificial diets as food sources. High-throughput 454 pyrosequencing of bacterial 16S rRNA gene revealed 225 operational taxonomic units (OTUs) based on a 97% sequences similarity cutoff from 138,279 sequence reads, the majority of which were derived from Proteobacteria (48.2%), Firmicutes (45.5%), and Actinobacteria (5.2%). The OTU network analysis revealed 7 modules with densely connected OTUs in specific gut samples, in which the distributions of Lactococcus-, Kluyvera-, Serratia-, and Enterococcus-related OTUs were distinct between diet types or developmental stages of the host insects. The gut bacterial communities were separated on a detrended correspondence analysis (DCA) plot and by c-means fuzzy clustering analysis, according to diet type. The results from this study suggest that diet was the main determinant for gut bacterial community composition in the two beetles.  相似文献
10.
Recently the significant decreases of species richness and abundance among terrestrial animals including butterflies are reported due to habitat change, overexploitation, and global warming. We compared the butterfly species composition and abundance from 1999 and 2014–2015 in a calcareous hill site of the middle part of Korea using a line transect method. There was a significant decrease in the number of individuals (abundance) and the number of species (richness) from 1999 to 2014–2015. This decrease was more prevalent among northern species than southern species, and the local extinct species were more prevalent among northern species, showing the influence of global warming on butterfly assemblages. However, no impact of habitat change was observed because of maintenance of the grasslands, which is caused by the dry soils of the calcareous region.  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号