首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1024篇
  免费   85篇
  国内免费   114篇
  2024年   2篇
  2023年   36篇
  2022年   36篇
  2021年   58篇
  2020年   65篇
  2019年   57篇
  2018年   28篇
  2017年   42篇
  2016年   53篇
  2015年   70篇
  2014年   116篇
  2013年   117篇
  2012年   71篇
  2011年   71篇
  2010年   65篇
  2009年   64篇
  2008年   27篇
  2007年   53篇
  2006年   51篇
  2005年   21篇
  2004年   21篇
  2003年   24篇
  2002年   20篇
  2001年   18篇
  2000年   12篇
  1999年   7篇
  1998年   4篇
  1997年   3篇
  1996年   6篇
  1995年   3篇
  1985年   2篇
排序方式: 共有1223条查询结果,搜索用时 15 毫秒
1.
A new phenolic glycoside, 4-hydroxyphenylethyl-1-O-β-D-[6′-O-(4-hydroxybenzoyl)]-glucopyranoside (1) was isolated from the stem bark of Acer tegmentosum, along with seven known phenolic compounds (28). The structure of compound 1 was determined by spectral analyses, including HR-ESI-MS, 1D and 2D NMR (COSY, HMQC and HMBC) experiments. Compounds 3 and 4 were found in the family Aceraceae for the first time.  相似文献   
2.
Large-scale production of renewable biofuels through microbiological processes has drawn significant attention in recent years, mostly due to the increasing concerns on the petroleum fuel shortages and the environmental consequences of the over-utilization of petroleum-based fuels. In addition to native biofuel-producing microbes that have been employed for biofuel production for decades, recent advances in metabolic engineering and synthetic biology have made it possible to produce biofuels in several non-native biofuel-producing microorganisms. Compared to native producers, these non-native systems carry the advantages of fast growth, simple nutrient requirements, readiness for genetic modifications, and even the capability to assimilate CO2 and solar energy, making them competitive alternative systems to further decrease the biofuel production cost. However, the tolerance of these non-native microorganisms to toxic biofuels is naturally low, which has restricted the potentials of their application for high-efficiency biofuel production. To address the issues, researches have been recently conducted to explore the biofuel tolerance mechanisms and to construct robust high-tolerance strains for non-native biofuel-producing microorganisms. In this review, we critically summarize the recent progress in this area, focusing on three popular non-native biofuel-producing systems, i.e. Escherichia coli, Lactobacillus and photosynthetic cyanobacteria.  相似文献   
3.
To evaluate the physiological importance of cytosolic ascorbate peroxidase (APX) in the reactive oxygen species (ROS)-scavenging system, a full-length cDNA clone, named LmAPX, encoding a cytosolic ascorbate peroxidase was isolated from Lycium chinense Mill. using homologous cloning, then the expression of LmAPX under salt stress was investigated. After sequencing and related analysis, the LmAPX cDNA sequence was 965 bp in length and had an open reading frame (ORF) of 750 bp coding for 250 amino acids. Furthermore, the LmAPX sequence was sub-cloned into prokaryotic expression vector pET28a and the recombinant proteins had a high expression level in Escherichia coli. Results from a southern blot analysis indicated that three inserts of this gene existed in the tobacco genome encoding LmAPX. Compared with the control plants (wild-type and empty vector control), the transgenic plants expressing the LmAPX gene exhibited lower amount of hydrogen peroxide (H2O2) and relatively higher values of ascorbate peroxidase activity, proline content, and net photosynthetic rate (Pn) under the same salt stress. These results suggested that overexpression of the LmAPX gene could decrease ROS production caused by salt stress and protect plants from oxidative stress.  相似文献   
4.
《植物生态学报》2018,42(12):1154
叶片碳(C)、氮(N)、磷(P)含量及其化学计量特征为植物养分状况和元素限制性提供依据。为了解不同生活型植物叶片C、N、P化学计量特征的变化,该研究测定、分析了大兴安岭地区18个泥炭地常见的3种草本植物——白毛羊胡子草(Eriophorum vaginatum)、玉簪薹草(Carex globularis)、小叶章(Deyeuxia angustifolia), 5种落叶灌木——柴桦(Betula fruticosa)、越桔柳(Salix myrtilloides)、细叶沼柳(Salix rosmarinifolia)、笃斯越桔(Vaccinium uliginosum)、越桔(Vaccinium vitis-idaea)和3种常绿灌木——杜香(Ledum palustre)、地桂(Chamaedaphne calyculata)、头花杜鹃(Rhododendron capitatum)的叶片C、N、P含量。结果表明: (1)落叶和常绿灌木叶片C、N、P含量总体高于草本植物而C:N、C:P、N:P低于草本植物, 说明不同生活型植物具有不同的养分利用策略,灌木叶片C、N、P储存高于草本植物而N、P利用效率低于草本植物; (2)小叶章和头花杜鹃叶片N:P小于10, 同时其N含量小于全球植物叶片平均N含量, 相比其他植物来说更易受N限制; (3)采样地点解释了叶片C、N、P指标变异的12.8%-40.8%, 植物种类对叶片C、N、P指标变异的解释量占9.3%-25.5%; (4)草本植物C、N、P指标的地点间变异系数高于落叶和常绿灌木, 草本植物C、N、P指标对地点因素变化的响应较灌木敏感; (5)草本植物N含量种间变异系数高于落叶和常绿灌木, 落叶灌木P含量种间变异系数高于草本植物和常绿灌木, 草本植物和落叶灌木N、P吸收的种间生理分化较常绿灌木高。  相似文献   
5.
Biomechanics and Modeling in Mechanobiology - It is well known that residual deformations/stresses alter the mechanical behavior of arteries, e.g., the pressure–diameter curves. In an effort...  相似文献   
6.
Building resource-conserving and environmental-friendly society (referred to as “two-oriented society”, TOS) is an important way proposed by the Chinese government to achieve sustainable development. In this paper, a pilot city of constructing TOS in China-Wuhan is taken as a case to evaluate the performance of TOS from 2005 to 2012. Treating the indicators of TOS as multi-dimensional vectors, this paper proposes a methodological framework by integrating the methods of vector angle and Euclidean distance to measure the angle and distance between the vector of annual status of TOS and the vector of planning target of TOS. Based on this, the paper employs coordination (the angle between the two vectors) and effectiveness (the distance between the two vectors) to describe the performance of TOS and its subsystems, including economic development (ED), social and people's well-being (SW), resource consumption (RC), resource recycling (RR), environmental quality (EQ) and pollution control (PC). Moreover, grey relational analysis approach is used to analyse the core factors influencing TOS construction. Results reveal that the performance of TOS in Wuhan is continually improved in the study period while the performance of its subsystems shows several differences: (1) both coordination and effectiveness of TOS, ED and SW keep on improving, while those of EQ fluctuate; (2) the effectiveness of both RR and PC shows a downward trend while the coordination of them fluctuates; (3) the actual value of RC indicators reaches the planning targets. Based on the analysis of determinants, we suggest that strengthening technological ability and adding investment are extremely important to improve the performance of RC and PC. For the sake of improving RR, it is critical to provide more government public expenditure and encourage financial institutions to provide more loans to stimulate and support the businesses. Moreover, increasing the amount of R&D funding and maintaining steady external economic environment are proved to be effective to improve all subsystems of TOS.  相似文献   
7.
Applied Microbiology and Biotechnology - Tacrolimus (FK506), an effective immunosuppressant, is widely used in the treatment of autoimmune diseases. In this study, we identified that BulZ, a...  相似文献   
8.
The production of maize, a major staple food crop in sub-Saharan Africa is being constrained by the parasitic weed Striga hermonthica. The fungus Fusarium oxysporum f. sp. strigae (Foxy 2) that causes fusarium wilt of Striga in Ghana, West Africa, is being considered for biological control of the weed in Western Kenya. The present study investigated the efficacy of F. oxysporum f. sp. strigae (Foxy 2) for S. hermonthica management in Western Kenya. Research was conducted in post-entry quarantine (PEQ) facilities at Alupe, Busia, Homabay, Kibos and Siaya field stations for two seasons. Each PEQ was a split-plot, with 4 main blocks each having 6 treatment subplots. The treatments included seeds of two S. hermonthica-susceptible maize varieties, either coated with Foxy 2 using gum Arabic, gum Arabic alone, or left untreated. Data was collected over seven sampling periods on S. hermonthica population per plant, percentage of those that were wilting, and the severity of wilting. Maize plant growth parameters assessed included duration to 50% anthesis and 50% silking, plant height, number of leaves, stover and cob weights, and maize yield per hectare. Statistical analysis was done using SAS 9.1 software. Data on S. hermonthica population were analyzed by χ2-test using Proc Genmod (Poisson); while the other parameters were analyzed by Proc Mixed using study location, season and blocks as random effects, and the sampling periods as repeated effects. All the assessed parameters were similar between plants grown from seeds inoculated with F. oxysporum f. sp. strigae (Foxy 2), those coated with gum Arabic, and the ones without any coating. These parameters were also not different between the maize varieties. There are varying reasons for the disparities between results on F. oxysporum f. sp. strigae (Foxy 2) obtained in this Kenyan study, and those from researches outside this country. In conclusion, F. oxysporum f. sp. strigae strain Foxy 2 is predominantly safe on maize growth, but its efficacy in controlling S. hermonthica was not evident on the tested Kenyan soils.  相似文献   
9.
Chen  Chong-Juan  Liu  Xue-Yan  Wang  Xian-Wei  Hu  Chao-Chen  Xu  Shi-Qi  Mao  Rong  Bu  Zhao-Jun  Fang  Yun-Ting  Koba  Keisuke 《Plant and Soil》2021,467(1-2):345-357
Plant and Soil - Plant carbon (C), nitrogen (N), phosphorus (P) levels and their stoichiometry and N uptake strategies are important aspects influencing vegetation composition and C dynamics in...  相似文献   
10.
[背景] 工业酵母菌株的蛋白质表达通常存在表达量低、分泌效率低的问题。[目的] 考察失活Yapsin蛋白酶Yps1p和Yps2p对β-葡萄糖苷酶在酿酒酵母An-α菌株中表达的影响。[方法] 利用CRISPR/Cas9基因组编辑技术,首先构建得到未折叠蛋白响应(Unfolded Protein Response,UPR)指示菌株An-α(leu2::UPRE-lacZ)即An-αL,然后分别失活其YPS1和YPS2基因,导入以YEplac195为载体的β-葡萄糖苷酶表达质粒(简称BG),进行生长和酶活分析评价。[结果] 菌株An-αL的YPS1和YPS2基因失活对其在酵母浸出粉胨葡萄糖(Yeast Extract Peptone Dextrose,YPD)培养基中的生长未造成明显的不利影响;导入质粒BG后将在酵母浸出粉胨纤维二糖(Yeast Extract Peptone Cellobiose,YPC)培养基中生长的最大OD600分别提高了21.9%和7.4%;最大总酶活值为0.087 5和0.068 6 U/(mL·OD600),是对照菌株相应值的2.268倍和1.778倍;分泌比例提高了19.4%和22.2%;β-葡萄糖苷酶表达水平与β-半乳糖苷酶酶活水平所代表的UPR信号响应值之间呈现良好的相关性。[结论] YPS1和YPS2基因失活有助于改进酿酒酵母An-α菌株中β-葡萄糖苷酶的分泌表达。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号