首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  完全免费   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2015年   2篇
排序方式: 共有5条查询结果,搜索用时 31 毫秒
1
1.
2.
3.
4.
5.
The emergence of drug-resistant pathogenic bacteria threatens human health. Resistance to existing antibiotics is increasing, while the emergence of new antibiotics is slowing. Cationic antimicrobial peptides (CAMPs) are fascinating alternative antibiotics because they possess a broad spectrum of activity, being active against both Gram-positive and Gram-negative bacteria including those resistant to traditional antibiotics. However, low bioavailability resulting from enzymatic degradation and attenuation by divalent cations like Mg2+ and Ca2+ limits their use as antibiotic agents. Here, we report the design of new CAMPs showing both high antibacterial activity and serum stability under physiological ion concentrations. The peptides were designed by applying two approaches, the use of d-enantiomer and lipidation. Based on the sequence of the CopW (LLWIALRKK-NH2), a nonapeptide derived from coprisin, a series of novel d-form CopW lipopeptides with different acyl chain lengths (C6, C8, C10, C12, C14, and C16) were synthesized and evaluated with respect to their activity and salt sensitivity. Among the analogs, the d-form lipopeptide dCopW3 exhibited MIC values ranging from 1.25 to 5 μM against multidrug-resistant bacteria. Significantly, this compound did not induce bacterial resistance and was highly stable in human serum proteases. The results emphasize the potential of cationic d-form lipopeptide as therapeutically valuable antibiotics for treating drug-resistant bacterial infections.  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号