首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   139篇
  完全免费   3篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   5篇
  2013年   5篇
  2012年   12篇
  2011年   10篇
  2010年   12篇
  2009年   8篇
  2008年   11篇
  2007年   7篇
  2006年   9篇
  2005年   6篇
  2004年   11篇
  2003年   10篇
  2002年   10篇
  2001年   7篇
  2000年   3篇
  1999年   2篇
  1996年   4篇
  1994年   2篇
  1993年   1篇
  1987年   1篇
排序方式: 共有142条查询结果,搜索用时 78 毫秒
1.
Polyhydroxybutyrate synthesis in transgenic flax   总被引:12,自引:0,他引:12  
Flax (Linum usitatissimum L.) is an annual plant species widely cultivated in temperate climates for bast fibres and linseed oil. Apart from traditional textile use, the fibres are fast becoming an integral part of new composite materials utilized in automobile and constructive industry. Especially attractive for environmental safety demands are biodegradable and renewable biocomposities based on polyhydroxybutyrate (PHB) polymer as a matrix and reinforced with the flax fibres. Manufacturing of PHB by bacteria fermentation is however substantially more expansive as compared to technologies producing conventional plastics. We report for the first time generation of transgenic plants which produce both components of flax/PHB composites, i.e. the fibres and the thermoplastic matrix in the same plant organ of a crop. The flax (cv. Nike) plants were transformed using constructs bearing either single cDNA, encoding the beta-ketothiolase enzyme (C plants), or all three of the genes necessary for poly-beta-hydroxybutyrate (PHB) synthesis (M plants). Both constructs contained a plastidial targeting sequence. The amount of PHB produced by the transgenic plants was up to over 70-fold higher than in wild-type plants, when analysed using the gas chromatography/mass spectrometry (GC-MS method). The PHB accumulation in plastids caused change both in their shape and size. The use of a stem-specific promoter for transgene expression protected the transgenic plant from growth retardation and also provided higher PHB synthesis than in the case of constructs governed by the 35S CaMV constitutive promoter. None toxic effects that could lead to stunted growth or the loss of fertility were observed, when 14-3-3 promoter was used as the stem-specific. Significant modifications in stem mechanical properties were accompanied to the PHB accumulation in growing cell of fibres in the transgenic plants. The Young's modulus E, the average measure of stem tissues resistance to tensile loads increased up to twice in M plants as compared to a single gene transformed ones. However, a wide range of E values, from 24.1 to 54.4 MPa, was observed in dependence of tested strain. Potential commercial significance of the genetic manipulation approach enabling synthesis of thermoplastic in crops cultivated for fibres is discussed.  相似文献
2.
Braun M  Hauslage J  Czogalla A  Limbach C 《Planta》2004,219(3):379-388
Polar organization and gravity-oriented, polarized growth of characean rhizoids are dependent on the actin cytoskeleton. In this report, we demonstrate that the prominent center of the Spitzenkörper serves as the apical actin polymerization site in the extending tip. After cytochalasin D-induced disruption of the actin cytoskeleton, the regeneration of actin microfilaments (MFs) starts with the reappearance of a flat, brightly fluorescing actin array in the outermost tip. The actin array rounds up, produces actin MFs that radiate in all directions and is then relocated into its original central position in the center of the Spitzenkörper. The emerging actin MFs rearrange and cross-link to form the delicate, subapical meshwork, which then controls the statolith positioning, re-establishes the tip-high calcium gradient and mediates the reorganization of the Spitzenkörper with its central ER aggregate and the accumulation of secretory vesicles. Tip growth and gravitropic sensing, which includes control of statolith positioning and gravity-induced sedimentation, are not resumed until the original polar actin organization is completely restored. Immunolocalization of the actin-binding proteins, actin-depolymerizing factor (ADF) and profilin, which both accumulate in the center of the Spitzenkörper, indicates high actin turnover and gives additional support for the actin-polymerizing function of this central, apical area. Association of villin immunofluorescence with two populations of thick undulating actin cables with uniform polarity underlying rotational cytoplasmic streaming in the basal region suggests that villin is the major actin-bundling protein in rhizoids. Our results provide evidence that the precise coordination of apical actin polymerization and dynamic remodeling of actin MFs by actin-binding proteins play a fundamental role in cell polarization, gravity sensing and gravity-oriented polarized growth of characean rhizoids.Abbreviations ADF Actin-depolymerizing factor - CD Cytochalasin D - MF Microfilament  相似文献
3.
Active transport of metalloids by Acr3p and Ycf1p in Saccharomyces cerevisiae and chelation by phytochelatins in Schizosaccharomyces pombe, nematodes, and plants represent distinct strategies of metalloid detoxification. In this report, we present results of functional comparison of both resistance mechanisms. The S. pombe and wheat phytochelatin synthase (PCS) genes, when expressed in S. cerevisiae, mediate only modest resistance to arsenite and thus cannot functionally compensate for Acr3p. On the other hand, we show for the first time that phytochelatins also contribute to antimony tolerance as PCS fully complement antimonite sensitivity of ycf1Delta mutant. Remarkably, heterologous expression of PCS sensitizes S. cerevisiae to arsenate, while ACR3 confers much higher arsenic resistance in pcsDelta than in wild-type S. pombe. The analysis of PCS and ACR3 homologues distribution in various organisms and our experimental data suggest that separation of ACR3 and PCS genes may lead to the optimal tolerance status of the cell.  相似文献
4.
The aim of this study was to establish a protocol for the efficient production of flax plants of microspore origin. The results were compared to those obtained for plants regenerated from somatic explants from hypocotyls, cotyledons, leaves, stems and roots. All the plants obtained during the experiments were regenerated from callus that was grown for periods from a few weeks to a few months before the regeneration was achieved. Anther cultures were less effective in plant regeneration than somatic cell cultures. However, regenerants derived from anther cells showed valuable breeding features, including increased resistance to fungal wilt. The age of the donor plants and the season they grew in had a noticeable effect on their anther callusing and subsequent plant regeneration. Low temperature had a negative effect and dark pre-treatment a positive effect on callusing and plant regeneration. Different media were most effective for callus induction, shoot induction and rooting. For callus induction two carbon sources (2.5% sucrose and 2.5% glucose) were most effective; for shoots, only sucrose at lower concentration (2%) was effective. Rooting was most efficient in 1% sucrose and reduced (50%) mineral concentration in the medium. It was found that the length of in vitro cultivation significantly increases the ploidy and affects such features as regenerant morphological characteristics, petal colour, and resistance to Fusarium oxysporum-induced fungal wilt. The established plant regeneration system provides a basis for the creation of transgenic flax.Abbreviations BAP 6-Benzyl-aminopurine - IAA Indole-3-acetic acid - MS Murashige and Skoog medium - NAA -Naphthalene-acetic acidCommunicated by H. Lörz  相似文献
5.
The catecholamine biosynthesis route in potato is affected by stress.   总被引:1,自引:0,他引:1  
The catecholamine compounds in potato (Solanum tuberosum L.) leaves and tubers have been identified by gas chromatography coupled to mass spectrometry (GC-MS) measurements. The finding that the catecholamine level is dramatically increased upon tyrosine decarboxylase (TD) overexpression potentiates the investigation on their physiological significance in plants. It was then evidenced that catecholamines play an important role in regulation of starch-sucrose conversion in plants. In this paper we investigated catecholamine biosynthetic pathway in potato plants exposed to the different stress conditions. The activation of TD (EC 4.1.1.25), tyrosine hydroxylase (TH, EC 1.14.18.1) and l-Dopa decarboxylase (DD, EC 4.1.1.25) was a characteristic feature of the potato leaves treated with abscisic acid (ABA). In high salt condition only TD activity was increased and in drought both TH and DD were activated. UV light activated predominantly DD activity. Leaves of plants grown in the dark and in red light circumstances were characterized by significantly decreased activities of all the three enzymes whereas those grown in cold were characterized by the decreased activity of DD only. In all, stress conditions the normetanephrine level and thus catecholamine catabolism was significantly decreased. Increased catecholamine level in TD-overexpressing potato resulted in enhanced pathogen resistance. Our data suggest that plant catecholamines are involved in plant responses towards biotic and abiotic stresses. It has to be pointed out that this is the first report proposing catecholamine as new stress agent compounds in plants.  相似文献
6.
Abstract The role of ozone in the susceptibility of clinical isolates of Acinetobacter anitratus and Pseudomonas aeruginosa to serum was investigated. It was found that ozone-treated cells were more susceptible to complement-mediated killing serum. These results suggest that ozone damage or change of cell membrane leads to a more rapid penetration of the membrane attack complex of complement.  相似文献
7.
Supramolecular aggregates containing cationic lipids have been widely used as transfection mediators due to their ability to interact with negatively charged DNA molecules and biological membranes. First steps of the process leading to transfection are partly electrostatic, partly hydrophobic interactions of liposomes/lipoplexes with cell and/or endosomal membrane. Negatively charged compounds of biological membranes, namely glycolipids, glycoproteins and phosphatidylserine (PS), are responsible for such events as adsorption, hemifusion, fusion, poration and destabilization of natural membranes upon contact with cationic liposomes/lipoplexes. The present communication describes the dependence of interaction of cationic liposomes with natural and artificial membranes on the negative charge of the target membrane, charges which in most cases were generated by charging the PS content or its exposure. The model for the target membranes were liposomes of variable content of PS or PG (phosphatidylglycerol) and erythrocyte membranes in which the PS and other anionic compound content/exposure was modified in several ways. Membranes of increased anionic phospholipid content displayed increased fusion with DOTAP (1,2-dioleoyl-3-trimethylammoniumpropane) liposomes, while erythrocyte membranes partly depleted of glycocalix, its sialic acid, in particular, showed a decreased fusion ability. The role of the anionic component is also supported by the fact that erythrocyte membrane inside-out vesicles fused easily with cationic liposomes. The data obtained on erythrocyte ghosts of normal and disrupted asymmetry, in particular, those obtained in the presence of Ca2+, indicate the role of lipid flip-flop movement catalyzed by scramblase. The ATP-depletion of erythrocytes also induced an increased sensitivity to hemoglobin leakage upon interactions with DOTAP liposomes. Calcein leakage from anionic liposomes incubated with DOTAP liposomes was also dependent on surface charge of the target membranes. In all experiments with the asymmetric membranes the fusion level markedly increased with an increase of temperature, which supports the role of membrane lipid mobility. The decrease in positive charge by binding of plasmid DNA and the increase in ionic strength decreased the ability of DOTAP liposomes/lipoplexes to fuse with erythrocyte ghosts. Lower pH promotes fusion between erythrocyte ghosts and DOTAP liposomes and lipoplexes. The obtained results indicate that electrostatic interactions together with increased mobility of membrane lipids and susceptibility to form structures of negative curvature play a major role in the fusion of DOTAP liposomes with natural and artificial membranes.  相似文献
8.
9.
Plant infection is accompanied by an oxidative burst that produces free radicals of various natures. The approach that we exploited in this study was to increase the antioxidative potential of flax by genetic engineering. Overexpressing the yeast Met25 gene coding for O-acetylhomoserine-O-acetylserine (OAH-OAS) sulfhydrylase in flax resulted in a significant increase in cysteine and methionine biosynthesis. This overproduction of sulfur amino acids increases the synthesis of glutathione, a tripeptide containing cysteine. The increase in glutathione content in the transgenic plant increases its antioxidative potential, and thus improves the plant's protection against Fusarium infection.  相似文献
10.
AIMS: Lumican, a small leucine-rich proteoglycan (SLRP), has attracted attention as a molecule of the extracellular matrix possibly involved in signalling pathways affecting cancer cell behaviour. The remodelling of the actin cytoskeleton, induced in response to external stimuli, is crucial for cell motility and intracellular signal transduction. The main goal of this study was to examine the effects of recombinant lumican on actin organization, the state of actin polymerization, actin isoform expression, and their sub-cellular distribution in the A375 human melanoma cell line. MAIN METHODS: Fluorescence and confocal microscopy were used to observe actin cytoskeletal organization and the sub-cellular distribution of cytoplasmic beta- and gamma-actins. The ability of actin to inhibit DNaseI activity was used to quantify actin. Western blotting and real-time PCR were used to determine the expression levels of the actin isoforms. KEY FINDINGS: A375 cells grown on lumican coatings changed in morphology and presented rearranged actin filament organization: from filaments evenly spread throughout the whole cell body to their condensed sub-membrane localization. In the presence of lumican, both actin isoforms were concentrated under the cellular membrane. A statistically significant increase in the total, filamentous, and monomeric actin pools was observed in A375 cells grown on lumican. SIGNIFICANCE: Novel biological effects of lumican, an extracellular matrix SLRP, on the actin pool and organization are identified, which may extend our understanding of the mechanism underlying the inhibitory effect of lumican on the migration of melanoma cells.  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号