首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   404篇
  免费   23篇
  国内免费   2篇
  2023年   1篇
  2022年   4篇
  2021年   17篇
  2020年   11篇
  2019年   12篇
  2018年   11篇
  2017年   7篇
  2016年   18篇
  2015年   13篇
  2014年   25篇
  2013年   44篇
  2012年   34篇
  2011年   38篇
  2010年   18篇
  2009年   13篇
  2008年   22篇
  2007年   19篇
  2006年   10篇
  2005年   7篇
  2004年   9篇
  2003年   17篇
  2002年   8篇
  2001年   10篇
  2000年   11篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1994年   5篇
  1992年   10篇
  1991年   5篇
  1990年   3篇
  1989年   2篇
  1988年   1篇
  1987年   5篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1972年   3篇
排序方式: 共有429条查询结果,搜索用时 31 毫秒
1.
Metarhizium isolates from soil (53) and insect hosts (10) were evaluated for extracellular production of cuticle degrading enzyme (CDE) activities such as chitinase, chitin deacetylase (CDA), chitosanase, protease and lipase. Regression analysis demonstrated the relation of CDE activities with Helicoverpa armigera mortality. On basis of this relation, ten isolates were selected for further evaluation. Subsequently, based on LT50 of the 10 isolates towards H. armigera, five isolates were selected. Out of these five isolates, three were selected on the basis of higher conidia production (60–75 g/kg rice), faster sedimentation time (ST50) (2.3–2.65 h in 0.1% (w/v) Tween 80) and lower LC50 (1.4–5.7×103 conidia/mL) against H. armigera. Finally, three Metarhizium isolates were selected for the molecular fingerprinting using ITS sequencing and RAPD patterning. All three isolates, M34412, M34311 and M81123, showed comparable RAPD patterns with a 935G primer. These were further evaluated for their field performance against H. armigera in a chickpea crop. The percent efficacies with the three Metarhizium isolates were from 65 to 72%, which was comparable to the chemical insecticide, endosulfan (74%).  相似文献   
2.
Lipase production by Candida rugosa was carried out in submerged fermentation. Plackett-Burman statistical experimental design was applied to evaluate the fermentation medium components. The effect of twelve medium components was studied in sixteen experimental trials. Glucose, olive oil, peptone and FeCl3?6H2O were found to have more significance on lipase production by Candida rugosa. Maximum lipase activity of 3.8 u mL-1 was obtained at 50 h of fermentation period. The fermentation was carried out at optimized temperature of 30oC, initial pH of 6.8 and shaking speed of 120 r/min. Unstructured kinetic models were used to simulate the experimental data. Logistic model, Luedeking-Piret model and modified Luedeking-Piret model were found suitable to efficiently predict the cell mass, lipase production and glucose consumption respectively with high determination coefficient(R2). From the estimated values of the Luedeking-Piret kinetic model parameters, α and β, it was found that the lipase production by Candida rugosa is growth associated.  相似文献   
3.
The effect of repeated conidial sub-culturing of Metarhizium anisopliae on its virulence against Helicoverpa armigera (Hübner) was studied. The LT50 observed against third instar larvae of H. armigera for the first sub-culture was 3.4 days; it increased to 4.5 and 5.6 days for the 20th and the 40th sub-cultures, respectively. The LT50 values after passage of the 40th sub-culture on H. armigera decreased to 4.4 and 3.7 days for the 40th (first in vivo) and the 40th (fifth in vivo) passages, respectively. Similarly, the LC50 of M. anisopliae towards third instar larvae of H. armigera increased from the first sub-culture (0.17×104) to (3.0×104) for the 40th conidial transfers on potato dextrose agar and again decreased to 0.74×104 and 0.23×104 in the 40th (first in vivo) and the 40th (fifth in vivo) passage, respectively. Similar trends for LC50 and LT50 values were seen when sugarcane woolly aphid, Ceratovacuna lanigera Zehntner was used as a host. Significant variation in appressorium formation and cuticle-degrading enzyme production such as chitinase, chitin deacetylase, chitosanase and protease during subsequent sub-culturing and passage through H. armigera was observed. Though there was no effect on internal transcribed spacer (ITS) sequence pattern, interestingly, in randomly amplified polymorphic DNA (RAPD), significant differences in the band intensities and in the banding pattern for different sub-cultures of M. anisopliae were observed. As stable virulence towards the insect pest is desirable for commercialisation of a mycoinsecticide, such changes in virulence due to repeated in vitro transfer need to be monitored and minimised.  相似文献   
4.
Recruitment of 53BP1 to chromatin flanking double strand breaks (DSBs) requires γH2AX/MDC1/RNF8-dependent ubiquitination of chromatin and interaction of 53BP1 with histone H4 methylated on lysine 20 (H4K20me). Several histone methyltransferases have been implicated in 53BP1 recruitment, but their quantitative contributions to the 53BP1 response are unclear. We have developed a multi-photon laser (MPL) system to target DSBs to subfemtoliter nuclear volumes and used this to mathematically model DSB response kinetics of MDC1 and of 53BP1. In contrast to MDC1, which revealed first order kinetics, the 53BP1 MPL-DSB response is best fitted by a Gompertz growth function. The 53BP1 MPL response shows the expected dependency on MDC1 and RNF8. We determined the impact of altered H4K20 methylation on 53BP1 MPL response kinetics in mouse embryonic fibroblasts (MEFs) lacking key H4K20 histone methyltransferases. This revealed no major requirement for the known H4K20 dimethylases Suv4-20h1 and Suv4-20h2 in 53BP1 recruitment or DSB repair function, but a key role for the H4K20 monomethylase, PR-SET7. The histone methyltransferase MMSET/WHSC1 has recently been implicated in 53BP1 DSB recruitment. We found that WHSC1 homozygous mutant MEFs reveal an alteration in balance of H4K20 methylation patterns; however, 53BP1 DSB responses in these cells appear normal.  相似文献   
5.
6.
The mathematical model of Abdekhodaie and Wu (J Membr Sci 335:21–31, 2009) of glucose-responsive composite membranes for closed-loop insulin delivery is discussed. The glucose composite membrane contains nanoparticles of an anionic polymer, glucose oxidase and catalase embedded in a hydrophobic polymer. The model involves the system of nonlinear steady-state reaction–diffusion equations. Analytical expressions for the concentration of glucose, oxygen and gluconic acid are derived from these equations using the Adomian decomposition method. A comparison of the analytical approximation and numerical simulation is also presented. An agreement between analytical expressions and numerical results is observed.  相似文献   
7.
CK1δ (Casein kinase I isoform delta) is a member of CK1 kinase family protein that mediates neurite outgrowth and the function as brain-specific microtubule-associated protein. ATP binding kinase domain of CK1δ is essential for regulating several key cell cycle signal transduction pathways. Mutation in CK1δ protein is reported to cause cancers and affects normal brain development. S97C mutation in kinase domain of CK1δ protein has been involved to induce breast cancer and ductal carcinoma. We performed molecular docking studies to examine the effect of this mutation on its ATP-binding affinity. Further, we conducted molecular dynamics simulations to understand the structural consequences of S97C mutation over the kinase domain of CK1δ protein. Docking results indicated the loss of ATP-binding affinity of mutant structure, which were further rationalized by molecular dynamics simulations, where a notable loss in 3-D conformation of CK1δ kinase domain was observed in mutant as compared to native. Our results explained the underlying molecular mechanism behind the observed cancer associated phenotype caused by S97C mutation in CK1δ protein.  相似文献   
8.
Ras-related C3 botulinum toxin substrate 1 (RAC1) is a plasma membrane-associated small GTPase which cycles between the active GTP-bound and inactive GDP-bound states. There is wide range of evidences indicating its active participation in inducing cancer-associated phenotypes. RAC1 F28L mutation (RACF28L) is a fast recycling mutation which has been implicated in several cancer associated cases. In this work we have performed molecular docking and molecular dynamics simulation (~0.3 μs) to investigate the conformational changes occurring in the mutant protein. The RMSD, RMSF and NHbonds results strongly suggested that the loss of native conformation in the Switch I region in RAC1 mutant protein could be the reason behind its oncogenic transformation. The overall results suggested that the mutant protein attained compact conformation as compared to the native. The major impact of mutation was observed in the Switch I region which might be the crucial reason behind the loss of interaction between the guanine ring and F28 residue.  相似文献   
9.
Alterations of endothelial cells and the vasculature play a central role in the pathogenesis of a broad spectrum of the most dreadful of human diseases, as endothelial cells have the key function of participating in the maintenance of patent and functional capillaries. The endothelium is directly involved in peripheral vascular disease, stroke, heart disease, diabetes, insulin resistance, chronic kidney failure, tumor growth, metastasis, venous thrombosis, and severe viral infectious diseases. Dysfunction of the vascular endothelium is thus a hallmark of human diseases. In this review the main endothelial abnormalities found in various human diseases such as cancer, diabetes mellitus, atherosclerosis, and viral infections are addressed.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号