首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   4篇
  国内免费   14篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
  2014年   5篇
  2013年   3篇
  2012年   2篇
  2010年   2篇
  2009年   5篇
  2008年   2篇
  2007年   1篇
排序方式: 共有26条查询结果,搜索用时 15 毫秒
1.
4种城市绿化树种叶片PAHs含量特征与叶面结构的关系   总被引:1,自引:0,他引:1  
彭钢  田大伦  闫文德  朱凡  梁小翠 《生态学报》2010,30(14):3700-3706
用气质联用仪测定了长沙市樟树(Cinnamomu camphora)、广玉兰(Magnolia grandiflora)、桂花(Opsmanthus fragrans)和红檵木(Redrlowered loropetalum)4个主要绿化树种叶片中PAHs含量,同时测定了叶片的气孔密度、气孔长宽比、叶片的宽长比和叶面积等叶面结构特征值,探讨了叶面结构与叶片中PAHs含量的关系。结果表明:红檵木叶片的PAHs含量最高,为11.13mg·kg-1,16种PAHs在4树种叶片中均有不同程度的检出,其中以3环和4环为主,菲的浓度最高。除桂花外,在气温较低的秋冬季节,其余3种植物叶片气孔密度大PAHs含量高。叶面宽长比、气孔长宽比均与叶片PAHs含量呈极显著正相关,而叶面积与PAHs含量呈极显著负相关。表明叶面结构是影响叶片PAHs含量的重要因素。研究结果可为城市绿化树种合理选择与配置提供科学依据。  相似文献   
2.
杉木人工林去除根系土壤呼吸的季节变化及影响因子   总被引:6,自引:0,他引:6  
2007年1月至2008年12月,在长沙天际岭国家森林公园内,采用挖壕法研究杉木人工林去除根系后土壤呼吸速率季节动态及其与5 cm土壤温、湿度的相关关系。结果表明:去除根系与对照5 cm土壤温度的差异性不显著(P=0.987),5 cm土壤湿度差异显著(P=0.035)。杉木林去除根系处理后土壤呼吸速率明显降低,2007至2008两年实验期间去除根系与对照处理变化范围分别为0.19-2.01μmol.m-2s-1和0.26-2.61μmo.lm-2s-1,年均土壤呼吸速率分别为0.90μmo.lm-2s-1和1.30μmol.m-2s-1。去除根系土壤呼吸速率降低幅度为9.4%-59.7%,平均降低了30.4%。去除根系和对照的土壤呼吸速率与5 cm土壤温度之间均呈显著指数相关,模拟方程分别为:y=0.120e0.094t(R2=0.882,P=0.000),y=0.291e0.069t(R2=0.858,P=0.000)。Q10值分别为2.56和2.01。  相似文献   
3.
以阔叶树种木荷和栾树1年生幼树为对象,采用室内盆栽,通过配制3个不同浓度梯度的Pb Cl_2溶液于盆栽土壤中(L1L2L3),对比研究Pb胁迫下两种幼树叶片叶绿素荧光参数的响应规律,运用Lake模型从能量平衡及分配的角度揭示不同浓度Pb胁迫下木荷和栾树光系统Ⅱ运转状况,并为木本植物幼树耐Pb程度的快速诊断提供数据支撑。结果表明:3个不同浓度的Pb处理下,两种供试幼树随着入射光强(PAR)的增大,除非调节性能量耗散(Y_(NO))以外其他叶绿素荧光参数均随着PAR的变化而变化,相对电子传递速率(r ETR)和可调节性能量耗散(Y_(NPQ))呈上升趋势,而光系统Ⅱ(PSⅡ)量子效率(Y_(Ⅱ))和光化学猝灭(q L)呈下降趋势。同时,两种供试幼树的最大光能利用效率(Fv/Fm)、r ETR、Y_(Ⅱ)、q L,随着Pb污染浓度的增加而降低,而Y_(NPQ)和Y_(NO)则随着Pb污染浓度的增加而升高。Pb对两种供试植物叶绿素荧光参数的抑制效果在最大净光合速率(Pn)上也有体现。本实验还得出,在L1浓度时木荷PSⅡ反应中心的开放程度能保持在较高水准,随着污染浓度的增大,其光能转化能力弱于栾树。同时,栾树调节能量耗散的能力和对Pb胁迫的敏感程度均高于木荷,进一步说明了栾树对Pb的耐性高于木荷。综合分析后得出,Y_(NO)和Y_(NPQ)可作为植物Pb胁迫的评价指标。  相似文献   
4.
荒漠草原区柠条固沙人工林地表草本植被季节变化特征   总被引:13,自引:4,他引:9  
研究荒漠草原人工林固沙区地表草本植被季节变化特征及其和柠条林龄的关系,对于分析柠条人工林地表草本植物的季节适应性和制订合理的人工林管理措施均具有重要的科学意义。选择6、15、24年生和36年生柠条人工林为研究对象,通过调查每个样地5月、8月和10月地表草本植物密度、物种数、盖度和高度,分析了荒漠草原区柠条人工固沙林生长过程中地表草本植被季节变化特征及其影响因素。结果表明,地表草本植物物种数在柠条林龄6和15a时受季节改变的影响较小,在24a之后受到季节变化的显著影响(P0.05)。地表草本植物密度在柠条林龄6a时受季节改变的影响较小,但在15a之后季节变化显著影响地表草本植物个体数分布(P0.05),而且在10月具有最多的地表草本植物个体数。地表草本植被盖度和高度均受到季节变化的显著影响(P0.05),而受林龄的影响较小;不同年龄林地地表草本植被盖度和高度均表现为10月和8月较高,5月较低。研究表明,荒漠草原柠条人工林固沙区,柠条林发育生长和灌木形态的改变不仅影响土壤营养条件,而且还可以调控由于季节改变而引起的土壤温湿度变化,柠条林龄和季节更替二者交互作用,共同影响地表草本植被的季节变化特征。  相似文献   
5.
促生长激素释放激素(growth hormone releasing hormone, GHRH)主要生物学功能是刺激垂体细胞分泌生长激素,已被证实是动物体生长轴的重要调控因子之一,布氏鲳鲹是一种生长快速的海洋鱼类,为了揭示其代谢旺盛的调节机制,本研究从GHRH入手,利用RACE技术和qPCR方法对布氏鲳鲹GHRH基因进行了克隆、组织和胚胎表达模式研究。实验结果显示,布氏鲳鲹GHRH基因cDNA序列全长1019bp,5'UTR、3'UTR长度分别为327 bp和164 bp,开放阅读框528 bp,共编码175个氨基酸;同源性分析结果表明,布氏鲳鲹GHRH基因与其它鲈形目鱼类的同源性在91%以上。布氏鲳鲹GHRH基因的表达区域大多都集中在中枢系统,其中下丘脑表达量最高;GHRH在受精卵期到后续发育过程中均检测到表达,其表达水平在仔鱼期达到最高。序列分析、组织及胚胎表达的结果表明,布氏鲳鲹GHRH的调节模式仍然可能通过下丘脑调节垂体释放GH,GHRH在个体发育的较早阶段即开始发挥作用。本研究掌握了布氏鲳鲹GHRH基因的基本规律,为进一步研究生长轴的调控提供了理论参考。  相似文献   
6.
2007年1月至12月,在长沙天际岭国家森林公园,使用LI-COR-6400-09连接到LI-6400便携式CO2/H2O分析系统,测定亚热带枫香(Liquidambar formosana)和樟树(Cinnamomum camphora)林去除和添加凋落物(931.5 g · m-2a-1和1003.4 g · m-2a-1)的土壤呼吸速率以及5 cm土壤温、湿度,研究凋落物对2种森林生态系统中土壤呼吸速率的影响.结果表明:枫香和樟树林去除和添加凋落物的土壤呼吸速率季节变化显著,在季节动态上的趋势与5 cm土壤温度相似,均呈单峰曲线格局,全年去除凋落物土壤呼吸速率平均值分别为1.132 μmol CO2 · m-2s-1和1.933 μmol CO2 · m-2s-1,分别比对照处理1.397 μmol CO2 · m-2s-1和2.581 μmol CO2 · m-2s-1低18.62%和26.49%;添加凋落物土壤呼吸速率平均值分别为2.363 μmol CO2 · m-2s-1和3.267 μmol CO2 · m-2s-1,分别比对照处理高71.31%和39.18%.两种群落去除和添加凋落物土壤呼吸的季节变化均与5 cm土壤温度呈显著指数相关(P﹤0.001),与5 cm土壤湿度相关性不显著(P>0.05);土壤温度和湿度可以共同解释去除和添加凋落物后土壤呼吸变化的95.2%、93.7%和90.0%、92.8%.枫香和樟树群落去除和添加凋落物土壤呼吸温度敏感性Q10值分别为3.01、3.29和3.02、4.37,均比对照处理Q10值2.98和2.94高.这证明凋落物是影响森林CO2通量的一个重要因子.  相似文献   
7.
2007年1月至12月,采用LI-COR-6400-09气室连接到LI-COR-6400便携式CO2/H2O分析系统测定枫香(Liquidambar formosana)和樟树(Cinnamomum camphora)人工林的土壤呼吸,并分析了土壤水热因子及其根生物量对土壤呼吸的影响.研究结果表明:枫香和樟树人工林中土壤呼吸的季节动态存在明显的季节性变化,都呈现不规则的曲线格局.全年土壤呼吸速率平均值分别为1.501 ìmol 和2.800 ìmol s-1.枫香和樟树林土壤呼吸的季节变化与土壤温度呈显著的指数相关,土壤温度可以分别解释土壤呼吸变化的92.7%和77.4%,与土壤含水量呈二次方程关系,土壤含水量可以解释土壤呼吸变化的10.6%和18%.在P=0.05水平上多元回归分析,分别得出枫香和樟树土壤呼吸与土壤温度和含水量方程:y=0.4728e0.122tw0.002;y=0.061e0.235tw0.086,土壤温度和含水量共同可以解释土壤呼吸变化的94.5%和88.5%.枫香和樟树林中全年土壤呼吸的Q10值分别为2.62和3.26,Q10值在随着季节温度升高,而逐渐减小.两种人工林群落土壤呼吸季节变化表现出受非生物因子温度和水分变化的调控,同时也受森林植被的根生物量、凋落物量的影响.  相似文献   
8.
湖南省4种森林群落土壤氮的矿化作用   总被引:9,自引:0,他引:9  
2007年7月,用树脂芯原位测定土壤无机氮含量的方法,对湖南杉木、马尾松、樟树和枫香4种森林群落的土壤氮矿化进行了研究.研究结果表明,经过28d培养,4种森林群落土壤中NH+4-N含量分别下降了31.4%~50.5%,NO-3-N含量增加了8.2~17.3倍,氮矿化主要表现为硝化作用;氮矿化速率由大到小依次为樟树(0.05mg·kg-1·d-1)>马尾松(0.04 mg·kg-1·d-1)>枫香(-0.12 mg·kg-1·d-1)>杉木(-0.15 mg·kg-1·d-1).在4个森林群落的土壤中,NH+4-N是无机氮的主要存在形式,表现为在杉木群落中占78.42%、在马尾松中占79.17%、在樟树中占71.14%和枫香中占79.22%,而且NH+4-N的变化可以解释氮矿化量变化的96.1%~98.8%.土壤氮矿化速率与0~15 cm土壤的C/N、pH值呈显著性正相关,但与凋落物量和0~30 cm 土壤中细根生物量相关性不显著.  相似文献   
9.
改变凋落物输入对杉木人工林土壤呼吸的短期影响   总被引:9,自引:0,他引:9       下载免费PDF全文
 从2007年1月至12月, 在长沙天际岭国家森林公园, 通过改变杉木林凋落物输入, 研究杉木(Cunninghamia lanceolata)人工林群落去除凋落物、加倍凋落物土壤呼吸速率及5 cm土壤温、湿度的季节变化。结果表明: 去除和加倍凋落物对土壤温度和湿度产生的差异不显著(p﹥0.05), 对土壤呼吸全年产生的差异接近显著(Marginal significant)(p=0.058)。按植物生长期分别分析, 去除和加倍凋落物对土壤呼吸产生的差异, 在生长旺盛期差异显著(p=0.003), 在生长非旺盛期差异性不显著(p=0.098)。去除凋落物年均土壤呼吸速率为159.2 mg CO2·m–2·h–1, 比对照处理土壤呼吸速率(180.9 mg CO2·m–2·h–1)低15.0%, 加倍凋落物的土壤呼吸为216.8 mg CO2·m–2·h–1, 比对照处理高17.0%。去除和加倍凋落物土壤呼吸季节动态趋势与5 cm深度土壤温度相似, 它们之间呈显著指数相关, 模拟方程分别为: y=27.33e 0.087 2t (R2=0.853, p﹤0.001), y=37.25e 0.088 8t (R2=0.896, p﹤0.001)。去除和加倍凋落物的Q10值分别为2.39和2.43, 均比对照2.26大。去除和加倍凋落物土壤呼吸与土壤湿度之间关系不显著(p﹥0.05)。这一结果使我们能够在较短时间内观察到改变凋落物输入对土壤呼吸的影响, 证明凋落物是影响土壤CO2通量的重要因子之一。  相似文献   
10.
 亚热带杉木(Cunninghamia lanceolata)和马尾松(Pinus massoniana)在我国森林资源中占有十分重要的地位, 研究它们的土壤与表层凋落物的呼吸有助于了解它们的碳源汇时空分布格局及碳循环过程的关键驱动因子。采用Li-Cor 6400-09连接到Li-6400便携式CO2/H2O分析系统测定湖南两种针叶林群落(2007年1月至12月)的土壤呼吸及其相关根生物量和土壤水热因子。研究结果表明: 杉木和马尾松群落中土壤呼吸的季节变化显著, 在季节动态上的趋势相似, 都呈不规则曲线格局, 全年土壤呼吸速率平均值分别为186.9 mg CO2•m–2•h–1和242.4 mg CO2•m–2•h–1。从1月开始, 两种群落的土壤呼吸速率由最小值33.9 mg CO2•m–2•h–1和38.6 mg CO2•m–2•h–1随着气温的升高而升高, 杉木群落到7月底达到全年中最大值326.3 mg CO2•m–2•h–1, 而马尾松群落到8月中旬达到最大值467.3 mg CO2•m–2•h–1, 土壤呼吸的季节变化与土壤温度呈显著的指数相关, 土壤温度可以分别解释土壤呼吸变化的91.7%和78.0%, 和土壤含水量呈二次方程关系, 土壤含水量可以解释土壤呼吸变化的5.4%和8.4%。由土壤呼吸与土壤温度拟合的指数方程计算Q10值, 杉木和马尾松群落中全年土壤呼吸的Q10值分别为2.26和2.13, Q10值随着温度升高逐渐减小。两种群落土壤呼吸的差异主要受群落植被的根生物量、群落的凋落物量的影响。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号