首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   1篇
  国内免费   2篇
  2018年   2篇
  2015年   2篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
韩风森  王晓琳  胡聃 《生态学报》2018,38(2):595-605
采用红外气体分析法(IRGA)于2014年1—12月原位测定了北京市4个典型树种(国槐Sophora japonica,旱柳Salix matsudana,华北落叶松Larix principis-rupprechtii和侧柏Platycladus orientalis)在不同高度上的木质组织CO_2通量速率(E_(CO_2)),旨在比较不同树种间E_(CO_2)及其温度敏感性(Q_(10))的时间变化规律和铅锤分异特征。研究结果显示:(1)4个树种的E_(CO_2)均表现为单峰型季节变化规律,生长月份内的E_(CO_2)显著高于非生长月份,温度和枝干的径向生长是影响E_(CO_2)季节变化的主要因素;(2)E_(CO_2)对温度的敏感性在夏季月份明显降低,且出现明显的垂直分异:Q_(10)随测量高度的增加而增加,呈现出非连续的阶梯分布;(3)在日间尺度上,阔叶树种E_(CO_2)对温度的感性系数Q_(10)出现昼夜不对称现象,晚上Q_(10)明显升高。准确量化E_(CO_2)的时间变化规律和铅锤分异特征,细化不同时间尺度下E_(CO_2)对温度的响应特征,成为准确估算木质组织碳排放的前提条件。  相似文献   
2.
于盈盈  胡聃  王晓琳  李元征  韩风森 《生态学报》2015,35(23):7748-7755
城市的发展伴随着大量高层建筑的出现,城市建筑作为人工构筑物,形成了与自然环境不同的人工遮阴环境,这种人工环境可能会对其下生长的植物产生一定的影响。为了研究人工建筑遮阴与自然遮阴环境之间的差异,北京市典型高层建筑遮阴和冠层遮阴光环境进行了测量,发现建筑和冠层显著改变其遮阴微环境的光强和光质。两种遮阴下光合有效辐射分别为天空自然辐射的9.09%和5.50%,遮阴处的光合有效辐射均小于200μmol m~(-2)s~(-1),低于多数城市植物的光饱和点。与天空自然辐射相比,建筑遮阴处蓝光在光合有效辐射中所占比例(B/P)、蓝光与红光的比例(B/R)以及蓝光与远红光的比例(B/FR)升高,且高于冠层遮阴,红光与远红光的比例(R/FR)没有显著变化,而冠层遮阴下R/FR则低于天空自然辐射。建筑遮阴下光质的改变可能会对植物的光合产生积极作用,并可能影响到植物的形态及生理反应。窄波段和宽波段两种不同积分方法对R/FR没有显著影响,采用宽波段积分得到的B/R低于窄波段,但降低幅度很小,在植物光合生理研究方面两种积分方法可以通用。  相似文献   
3.
该研究采用红外气体分析法(IRGA)于2013年3–12月原位测定了北京市东升八家郊野公园中2个主要阔叶树种(槐(Sophora japonica)、旱柳(Salix matsudana))3个高度上的枝干呼吸(Rw)日进程,旨在量化Rw的种间差异,探索种内Rw及其温度敏感系数(Q10)的时间动态和垂直分布格局。研究结果显示:(1)Rw在不同树种之间差异明显,相同月份(4月份除外)槐Rw是旱柳的1.12(7月)–1.79倍(5月)。两树种枝干表面CO2通量速率均表现出明显的单峰型季节变化,峰值分别出现在7月((5.13±0.24)μmol·m–2·s–1)和8月((3.85±0.17)μmol·m–2·s–1)。同一树种在生长月份内的平均呼吸水平显著高于非生长季,但其Q10值季节变化趋势与之相反。(2)RW随测量高度的增加而升高,并在3个高度上表现出不同的日变化规律:其中,树干基部及胸高位置为单峰格局,而一级分枝处的呼吸速率在一天内存在两个峰值,中间出现短暂的"午休"现象。温度是造成一天内呼吸变化的主要原因。此外,顶部Rw及其对温度的敏感程度明显高于基部。温度本身和Q10值差异可在一定程度上解释RW的垂直梯度变化。(3)在生长月份,单位体积木质组织的日累积呼吸速率(mmol·m–3·d–1)与受测部位直径倒数(D–1)呈极显著正相关关系。单位面积(μmol·m–2·s–1)可准确表达两树种在生长期间的RW水平,能合理有效地比较不同个体的呼吸差异及同一个体的时空变异。这些结果表明,采用局部通量法上推至树木整体呼吸时,应全面考虑Rw的时、空变异规律,并选择恰当的表达单位,以减小估测误差。  相似文献   
4.
以北京逸成东苑小区为原型,基于ENVI-met构建塔式建筑群和板式建筑群模型,对其在典型春季、夏季各一天1.50 m处微气象特征进行模拟分析。结果表明,除夏季风速外,两季节塔式和板式建筑群模型其他各微气象要素时间序列模拟结果变化趋势基本相同,两模型春季模拟结果差异较小,而夏季模拟结果差异较大。春季,塔式建筑群比板式建筑群平均温度高0.16℃,平均相对湿度低0.89%,平均风速高0.18 m·s~(–1),平均辐射温度高2.21℃。夏季,塔式建筑群比板式建筑群平均温度低0.18℃,平均相对湿度低16.35%,平均风速低0.14 m·s~(–1),平均辐射温度高1.24℃。春季板式建筑群的室外热舒适度优于塔式建筑群,而夏季塔式建筑群的室外热舒适度优于板式建筑群。该结果可为住区规划、提高居民热舒适度等提供参考。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号