首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
  国内免费   21篇
  2024年   2篇
  2023年   1篇
  2022年   3篇
  2020年   1篇
  2019年   1篇
  2018年   4篇
  2017年   1篇
  2016年   5篇
  2015年   2篇
  2014年   4篇
  2013年   3篇
  2011年   1篇
排序方式: 共有28条查询结果,搜索用时 15 毫秒
1.
红松人工林树冠大小与果实产量关系的研究   总被引:1,自引:0,他引:1  
以黑龙江省佳木斯市孟家岗林场红松人工林为研究对象,基于12块样地70株枝解析数据及21块固定样地2008~2010年的结实量数据,利用异速生长方程建立立木树冠体积和表面积预估模型,同时对树冠大小与欠年、平年、丰年的红松结实量进行了相关分析。结果表明:树冠体积和表面积与冠长、胸径、冠幅和树高均显著相关,其中与胸径相关系数最大,与树高相关系数最小。本文所建立的模型确定系数R2都在0.55以上,预测精度大多数在85%以上。利用所建立的树冠体积与表面积模型,我们分析了其对结实量的影响。结果显示,红松人工林结实量与其树冠体积大小以及与树冠表面积大小呈线性关系,其中,结实丰年的结实量与树冠体积以及与树冠表面的线性关系最明显(r=0.726 7-0.733 8),平年次之(r=0.688 8-0.667 5),欠年最差(r<0.5)。总的来说,本文所建立的红松人工林立木树冠体积和表面积单变量和多变量模型能对红松立木树冠大小进行很好的估计,为进一步研究红松人工林结实规律及果材兼用林优化经营提供基础。  相似文献   
2.
红松人工林林木果实产量预估模型   总被引:1,自引:0,他引:1  
以黑龙江省佳木斯市孟家岗林场红松人工林为研究对象,基于在12块固定样地中测定的579株红松单株结实量数据,采用Logistic回归模型及非线性回归模型构建了红松单木果实产量预测模型。首先,根据各样木的结实情况,采用SAS9.22统计软件建立了人工红松单株木结实与否的Logistic概率模型,并作为判断林木是否结实的基础模型。然后,通过分析红松人工林单木结实量与林木各调查因子的关系,构建了单株木果实产量的非线性预测模型。结果表明,文中建立的Logistic模型判断红松结实的正确率在65%以上。通过分析拟合效果,选择y=a(D2CW)b作为红松人工林果实产量预估的最优模型,其预估精度为77%,残差分布均匀,模型的拟合效果较好。最后采用2号样地实测的果实产量数据对两个模型同时进行了检验,结果表明该样地结实量的预估精度为92.78%。本研究为人工红松果实产量的预测提供了可行的方法。  相似文献   
3.
基于树冠竞争因子的落叶松人工林单木生长模型   总被引:2,自引:0,他引:2  
基于黑龙江省佳木斯市孟家岗林场落叶松人工林14块固定标准地的两期调查数据(2007、2009年),通过分析树冠变量与林木生长的关系,构建了2个树冠竞争指数(CIa、CIb),并将其作为单木竞争指标构建了落叶松人工林与距离有关的单木生长模型。研究结果表明:文中提出的二个树冠竞争指数优于Hegyi竞争指数(CI),落叶松各个竞争指数与林木断面积生长量相关性大小顺序为CIbCIaCI。随着对象木影响圈的扩大,竞争指数趋于稳定,对模型的拟合效果有所提高。林木大小是影响落叶松单木生长的主要因子,胸径越大,单木生长量越大。通过引入与距离有关的树冠竞争指数将单木模型的拟合优度提高了5.6%。本文构建的与距离有关的单木生长模型可以很好地预估人工落叶松单木的断面积生长量。  相似文献   
4.
大尺度森林生物量的估算方法是人们目前关注的焦点,建立林分生物量模型成为一种趋势.本研究以大兴安岭东部6个主要林分类型为研究对象,构建了其总量及各分项一元、二元可加性林分生物量模型.采用似然分析法判断总量及各分项生物量异速生长模型的误差结构(可加型或相乘型),采用非线性似乎不相关回归模型方法估计模型参数.结果表明: 经似然分析法判断,大兴安岭东部6个主要林分类型总量及各分项生物量异速生长模型的误差结构都是相乘型的,对数转换的可加性生物量可以被选用.各林分类型可加性生物量模型的调整后确定系数为0.78~0.99,平均相对误差为-2.3%~6.9%,平均相对误差绝对值6.3%~43.3%.增加林分平均高可以提高绝大多数生物量模型的拟合效果和预测能力,而且总量、地上和树干生物量模型效果较好,树根、树枝、树叶和树冠生物量模型效果较差.为了使模型参数估计更有效,所建立的生物量模型应当考虑林分总生物量及各分项生物量的可加性.本研究建立的林分总量与各分项生物量模型都能对大兴安岭东部6个主要林分类型生物量进行较好的估计.  相似文献   
5.
彭娓  董利虎  李凤日 《生态学杂志》2016,27(12):3749-3758
基于大兴安岭东部地区主要林型的生物量调查数据,建立了3个主要树种的一元可加性生物量模型,探讨了不同林型森林群落和乔木层、灌木层、草本层、凋落物层的碳储量及其分配规律.结果表明: 杜鹃-兴安落叶松林乔、灌、草、凋落物层碳储量分别为71.00、0.34、0.05和11.97 t·hm-2,杜香-兴安落叶松林各层碳储量分别为47.82、0.88、0和5.04 t·hm-2,杜鹃-兴安落叶松-白桦混交林分别为56.56、0.44、0.04、8.72 t·hm-2,杜香-兴安落叶松-白桦混交林分别为46.21、0.66、0.07、6.16 t·hm-2,杜鹃-白桦林分别为40.90、1.37、0.04、3.67 t·hm-2,杜香-白桦林分别为36.28、1.12、0.18、4.35 t·hm-2.林下植被为杜鹃的林分群落碳储量大于林下植被为杜香的林分;林下植被相似的情况下,森林群落碳储量大小顺序为:兴安落叶松林>兴安落叶松-白桦混交林>白桦林;不同林型群落碳储量不同,大小顺序为:杜鹃-兴安落叶松林(83.36 t·hm-2)>杜鹃-兴安落叶松-白桦混交林(65.76 t·hm-2)>杜香-兴安落叶松林(53.74 t·hm-2)>杜香-兴安落叶松-白桦混交林(53.10 t·hm-2)>杜鹃-白桦林(45.98 t·hm-2)>杜香-白桦林(41.93 t·hm-2),且不同林型森林群落碳储量垂直分配规律为:乔木层(85.2%~89.0%)>凋落物层(8.0%~14.4%)>灌木层(0.4%~2.7%)>草本层(0~0.4%).  相似文献   
6.
刘强  董利虎  李凤日  李想 《生态学杂志》2016,27(9):2789-2796
以2014年黑龙江省帽儿山林场14年生人工长白落叶松为研究对象,对比分析了各项光合指标、环境因子及光合生理参数在冠层内的空间差异性,并探讨了净光合速率(Pn)与其他指标的关系.结果表明: 在树冠垂直方向,上层Pn、气孔导度(gs)和蒸腾速率(Tr)显著高于中层和下层,胞间CO2浓度(Ci)表现为下层>中层>上层;光合有效辐射(PAR)从上层外部到下层内部呈显著降低趋势,水汽压差(VPD)和叶片温度(Tl)表现为上层显著高于中层和下层,相对湿度(RH)则无显著差异;最大净光合速率(Pn max)、暗呼吸速率(Rd)、光补偿点(LCP)和光饱和点(LSP)均表现为上层>中层>下层,下层比上层分别降低32.7%、55.8%、80.2%和51.6%,表观量子效率(AQY)表现为下层>中层>上层,下层分别是中层和上层的1.2和1.3倍.水平方向,光合指标和环境因子的差异性主要体现在树冠上层,PngsTr、PAR和VPD表现为树冠外部显著高于树冠内部,而Ci和RH差异不显著;Pn maxRd、LCP和LSP表现为外部>内部,内部比外部分别降低0.4%、37.7%、42.0%和16.4%,而AQY在内部比外部高0.7%.Ci是限制Pn的主要生理因子,PAR是影响Pn的主要环境因子,尤其在弱光区域PAR对Pn的影响十分明显.因此,在模拟和预估树木冠层光合作用时,考虑空间异质性有一定的必要性.  相似文献   
7.
枝下高是反映树冠特征的重要指标,准确预测枝下高对森林的经营管理和提高林分生产具有重要意义。本研究采用非线性回归构建枝下高广义基础模型,再进一步扩展到混合效应模型和分位数回归模型,通过“留一法”检验对模型的预测能力进行评价和比较。此外,使用4种抽样设计和不同抽样大小对枝下高模型进行校正,选择最佳的模型校正方案。结果表明:基于包含树高、胸径、林分每公顷断面积和优势木平均高的枝下高广义模型、扩展后的混合效应模型以及三分位数组合模型的预测精度均显著提高,混合效应模型略优于三分位数组合模型,最佳抽样校正方案为抽5株平均木。因此,推荐在实践应用中使用混合效应模型,抽5株样地平均木校正预测枝下高。  相似文献   
8.
基于276株实测生物量数据,构建了东北林区红松、臭冷杉、红皮云杉和兴安落叶松4个天然针叶树种总量及各分项生物量一元、二元可加性生物量模型.采用似然分析法判断总量及各分项生物量异速生长模型的误差结构(可加型或相乘型),而模型参数估计采用非线性似乎不相关回归模型方法.结果表明: 经似然分析法判断,4个天然树种总量及各分项生物量异速生长模型的误差结构都是相乘型的,对数转换的可加性生物量可以被选用.各树种可加性生物量模型的调整后确定系数Ra2为0.85~0.99,平均相对误差为-7.7%~5.5%,平均相对误差绝对值<30.5%.增加树高可以显著提高各树种可加性生物量模型的拟合效果和预测能力,而且总量、地上和树干生物量模型效果较好,树根、树枝、树叶和树冠生物量模型效果较差.所建立的可加性生物量模型的预测精度为77.0%~99.7%(平均92.3%),可以很好地预估东北林区天然红松、臭冷杉、红皮云杉和兴安落叶松的生物量.
  相似文献   
9.
黑龙江省落叶松人工林碳储量动态研究   总被引:2,自引:0,他引:2  
基于36株碳密度测定样木和5期黑龙江省森林资清查数据(1986~2005),利用非线性度量误差模型来估计黑龙江省落叶松人工林的碳储量动态变化。结果表明:黑龙江省人工落叶松不同器官碳密度在456.7~479.0 mg·g-1之间,不同器官碳密度差异显著,各器官碳密度由高到低为:树叶>树枝>树干>树根。不同林龄落叶松人工林树干、树根树枝和树叶的碳储量分配比例分别稳定在:66.75%~68.92%、21.59%~22.62%、5.99%~8.16%和2.47%~3.50%。其中,树根和树枝含碳量比重随林分年龄增加而增加,树干和树叶含碳量比重随林分年龄增大而减小。1986~2005年黑龙江省落叶松人工林碳储量总体呈增长趋势,2000年时达最大,为30.38 t·hm-2,在此期间,平均每年以1.21 t·hm-2的速度增加。2005年黑龙江省不同区域落叶松人工林碳储量在25.43~34.35 t·hm-2之间,各区域碳储量由高到低依次为:小兴安岭南坡>完达山地区>张广才岭东坡>张广才岭西坡>小兴安岭北坡。  相似文献   
10.
基于黑龙江省孟家岗林场60株红松解析木3643个枝条生物量的实测数据,利用全部子回归技术建立了枝条生物量模型(枝、叶和枝总生物量模型),最终选择lnw=k1+k2lnLb+k3lnDb为枝条生物量最优基础模型.利用SAS 9.3统计软件的PROC MIXED模块建立枝条生物量混合模型,并采用AIC、BIC、对数似然值和似然比等统计指标评价不同模型的拟合效果.结果表明: 红松解析木的叶和枝总生物量混合模型以k1、k2、k3作为随机效应参数的拟合效果最好,而枝生物量混合模型以k1、k2作为随机效应参数的拟合效果最好.最后将枝条生物量最优基础模型与最优混合模型进行模型检验.混合模型各项指标优于基础模型,能有效地提高模型的预估精度,并且通过方差协方差结构校正随机参数来反映树木之间的差异.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号