首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
  国内免费   4篇
  2022年   1篇
  2021年   1篇
  2017年   2篇
  2016年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
不同采样密度下县域森林碳储量仿真估计   总被引:1,自引:1,他引:0  
采用浙江省台州市仙居县森林资源二类调查样地实测地上部分碳储量数据,结合Landsat TM影像数据,利用序列高斯协同仿真(SGCS)算法、序列高斯块协同仿真(SGBCS)算法,以4种地面采样密度(SD)SD_1=0.012%、SD_2=0.010%、SD_3=0.007%、SD_4=0.005%,估计全县森林碳储量及其空间分布,分析不同地面采样密度对区域森林碳储量及其分布格局估计精度的影响。结果表明:1)不同采样密度下SGCS和SGBCS估计的森林碳储量分布趋势相似,SGCS估计在采样密度为SD_2时可以满足精度要求,且均值与实测最相符;SGBCS估计受采样密度影响较小,在四种采样密度下均可满足精度要求。2)SGCS、SGBCS估计的不确定性随着采样密度的降低均呈现出整体升高的趋势,增长速率在SD_2采样密度时最低,相对SD_1分别升高1.08%、-1.71%;当SGBCS算法的采样密度由SD_2变为SD_3时,样地数的减少对不确定性影响最大,但对区域空间变异格局估计没有实质性影响。3)将采样密度控制在SD_2(0.010%)水平,利用SGCS和SGBCS算法均能得到准确可靠的森林碳储量及其分布信息,同时能节省至少20%左右的森林调查工作量。  相似文献   
2.
秦立厚  张茂震  袁振花  杨海宾 《生态学报》2017,37(10):3459-3470
森林是生态系统的重要组成部分,准确估算森林碳储量及其分布对于评价森林生态系统的功能具有重要意义。以龙泉市为研究区,利用2009年99个森林资源清查样地数据和同年度Landsat TM影像数据,采用高斯序列协同仿真(SGCS)与BP神经网络方法(BPNN)分别模拟森林地上部分碳密度及其分布,并进行了对比分析。随机将样本数据分成70个建模样本和29个检验样本。通过模型检验,BP神经网络预测值与实测值的相关性达到0.67,相对均方根误差为0.63,空间仿真方法预测值与实测值的相关性为0.68,相对均方根误差为0.63,空间仿真方法预测能力略高于神经网络方法。仿真结果表明,基于BP神经网络模拟的森林碳总量为11042990 Mg,平均碳密度为36.10 Mg/hm2,总体森林碳密度均值高于样地平均值8.82%。基于空间仿真模拟的森林碳总量为11388657 Mg,平均碳密度为37.23 Mg/hm2,总体森林碳密度均值高于样地平均值9.40%。对比分析可知:高斯协同仿真模拟和BP神经网络虽然在碳总量估算值上与抽样数据估计值相近,但两种方法在估测值的频率分布以及研究区碳分布上有较大的差异。与BP神经网络相比,序列高斯协同模拟结果更接近系统抽样样地实测值,全部样地预测值与实测值的相关性达到0.75,在估计区域森林碳空间分布上有明显优势。在碳密度值域与频率分布方面,序列高斯协同模拟结果分布更合理。综上所述,序列高斯协同模拟在森林碳空间估计方面要优于BP神经网络。  相似文献   
3.
森林生物量估算中模型不确定性分析   总被引:3,自引:1,他引:2  
秦立厚  张茂震  钟世红  于晓辉 《生态学报》2017,37(23):7912-7919
单木生物量估算是区域森林生物量估算的基础。量化单木生物量模型中各种不确定性来源,分析各不确定性来源对森林生物量估算的影响,可为提高森林生物量估算精度提供理论依据。基于52株杉木地上部分生物量实测数据,建立杉木单木地上部分生物量一元与二元模型。在两种模型形式下,根据临安市2009年森林资源连续清查数据中杉木实测数据,分析单木生物量模型中所包含的2种不确定性,即模型参数不确定性和模型残差变异引起的不确定性。最后利用误差传播定律计算单木生物量模型总不确定性。结果表明,基于一元生物量模型的临安市杉木生物量估计均值为6.94 Mg/hm~2,由一元模型残差变异引起的生物量不确定性约为11.1%,模型参数误差引起的生物量不确定性约为14.4%,一元生物量模型估算合成不确定性为18.18%。基于二元生物量模型的临安市杉木生物量估计均值为7.71 Mg/hm~2,模型残差变异引起的不确定性约为7.0%,模型参数误差引起的不确定性约为8.53%,二元生物量模型估算合成不确定性为11.03%。研究表明模型参数不确定性随建模样本的增加逐渐降低,当建模样本由30增加到40再增加到52时,一元生物量模型模型参数不确定性分别为20.26%、16.19%、14.4%,二元生物量模型分别为13.09%、9.4%、8.53%。此外,建模样本的增加对残差变异不确定性也有一定影响,当建模样本由30增加到42再增加到48时,一元模型残差变异不确定性分别为15.2%,12.3%和11.7%;二元模型残差变异不确定性分别为13.3%,9.4%和8.3%。在2种不确定性来源中模型参数不确定性对估计结果影响最大,其次为模型残差变异。由于模型残差变异、参数不确定性与建模样本有关,因此可以通过增加建模样本来减小模型参数不确定性。二元生物量模型总的不确定性要低于一元生物量模型。  相似文献   
4.
阔叶红松林是我国东北地区地带性顶级森林群落,对维持区域生态系统稳定性具有重要作用。对阔叶红松林内主要树种凋落叶分解过程及影响因素进行研究,有助于增加长白山阔叶红松林生态系统的基础数据,为明确阔叶红松林的养分循环和物质流动提供依据。选取了长白山阔叶红松林内30个常见乔灌树种和16个凋落叶性状,采用野外分解袋法和室内样品分析等方法研究了长白山阔叶红松林内主要树种凋落叶分解速率及其与凋落叶性状的关系。1年的野外分解实验表明,30个树种的凋落叶重量损失率表现出较大差异。不同树种凋落叶的重量损失率在20.56%—92.11%之间,以红松(Pinus koraiensis)质量损失率最低,东北山梅花(Philadelphus schrenkii)质量损失率最高。不同生活型树种的凋落叶在质量损失率上存在显著差异,以灌木树种凋落叶的质量损失率最高,小乔木次之,乔木树种质量损失率最低。Olson模型拟合结果表明,不同树种凋落叶的分解速率k以红松最低,瘤枝卫矛(Euonymus verrucosus)最高,分别为0.24和1.64。不同树种分解50%和95%所需的时间分别在0.43—2.86年,1.83—...  相似文献   
5.
利用不同时期土壤孢粉组成推断长白山火山爆发后的植被演替规律,还原该区域植被群落变化过程,对于揭示该研究区不同时期植被演替规律具有重要意义。该研究通过对长白山最近两次火山爆发后形成的土壤剖面所含的孢粉组成进行分析,揭示火山爆发后高山带的植被变化特征。结果表明:(1)两次火山爆发后的植被演替具有相似的过程,即孢子植物阶段、草本植物阶段及木本植物阶段。(2)最近一次火山爆发后的海拔1 800 m处演替过程为:苔藓蕨类群落→草本群落→岳桦(Betula ermanii)群落。(3)较早一次火山爆发后的海拔2 050 m处演替过程为:苔藓蕨类群落→草本群落→岳桦群落;海拔2 160 m处演替过程为:苔藓蕨类群落→草本群落→偃松(Pinus pumila)群落。研究认为,火山爆发对植被产生重大破坏作用,使高山林线下降、偃松群落消失;最后一次火山爆发后经历1 000多年,高山林线仍未恢复到火山爆发前的水平。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号