首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  国内免费   3篇
  2019年   1篇
  2017年   1篇
  2016年   1篇
  2012年   1篇
  2009年   1篇
排序方式: 共有5条查询结果,搜索用时 9 毫秒
1
1.
实地测定了黄土高原半干旱区固原不同生长年限苜蓿草地和连作8a苜蓿草地翻耕轮作不同年限粮食作物后深层土壤水分特征,分析了苜蓿草地土壤干燥化特征和粮草轮作对土壤水分的恢复效应.结果表明:(1)苜蓿连作1a、5a、8a和12a等4类苜蓿草地0~1000cm土层平均土壤湿度值为6.6%,平均土壤水分过耗量702.8mm,平均土壤干燥化速率147.1mm/a,达到强烈干燥化程度,苜蓿连作5a土壤干层深度超过1000cm,苜蓿连作8a土壤干层深度超过1360cm,苜蓿草地合理利用年限为7a.(2)连作8a苜蓿草地翻耕并轮作4~7a和25a粮食作物等5类粮田0~1000cm土层土壤湿度介于6.74%~11.95%,土壤贮水量恢复值介于210.6~887.3mm,平均土壤水分恢复速率为80.8mm/a.轮作6a后粮田土壤干层轻度恢复程度以上深度达到1000cm.通过粮草轮作使苜蓿草地土壤湿度恢复到当地土壤稳定湿度需要13a以上.黄土高原半干旱区适宜的粮草轮作模式为:7a苜蓿→13a粮食作物.  相似文献   
2.
2010年中国农作物净初级生产力及其空间分布格局   总被引:2,自引:0,他引:2  
采用2011-2012年全国实测水稻、小麦、玉米、大豆、油菜、棉花6种作物的生物量获得的干燥系数(DC)、收获指数(HI)和根冠比(R/S),结合2010年以县为单位的农业统计数据估算了2010年中国农作物产生的净初级生产力(NPP)。2010年中国农作物产生的NPP为596 Tg C,其中地上NPP为517 Tg C,地下NPP为80 Tg C。NPP空间分布不平衡,主要集中在东北的松嫩三江平原、黄淮海平原、长江中下游平原、西南的四川盆地和华南的珠江流域。单位面积农作物产生的NPP介于9-2094 g C m-2 a-1之间,平均密度为519 g C m-2 a-1。NPP密度(NPPD)较高的地区主要分布在中国的东部的湿润、半湿润地区以及内陆灌溉条件较好的地区。9个农业区中,黄淮海区农作物产生的NPP最多,东北区NPPD最高,青藏区农作物NPPD最低,产生的NPP也最少。作物种植面积能解释98%农业区之间NPP差异。通过对每个区域内县域NPPD与气候因子和化肥因子做相关分析,发现化肥施用量、日照时数、气温和降水均对NPPD的空间分异有影响,但是9个区域的主导因素不同。  相似文献   
3.
细胞所处微环境的动态变化对细胞分化、细胞信号通路、个体生长以及疾病等有很大影响。光遗传学技术利用基因编码蛋白质表达并结合光控的手段为动态调控细胞信号通路、细胞定位和基因表达等方面提供了一种全新、无损、可逆、非侵入、时空特异性的研究手段。文中总结了光遗传学元件的类型以及涉及的细胞信号通路,并探讨了光控细胞信号通路的应用与未来发展前景。  相似文献   
4.
为了建立一种核酸酶P1(Nuclease P1,NP1)的原核表达纯化系统,首先采用重叠延伸PCR将22段寡核苷酸拼接,获得人工合成的NP1基因。将其克隆至分泌型表达载体pMAL-p4X获得重组质粒pMAL-p4X-NP1,然后将重组载体转化T7 Express和Origami B(DE3)菌株诱导表达,利用Amylose亲和层析柱纯化获得重组蛋白,并对其活性、热稳定性和金属离子依赖性进行系统分析。SDS-PAGE结果显示,重组蛋白MBP-NP1(Maltose binding protein-NP1)在T7 Express和Origami B(DE3)菌株中均可表达,且以可溶性形式存在。活性检测表明Origami B(DE3)菌株中获得的重组蛋白活性高于T7 Express菌株(75.48 U/mg:51.50 U/mg);利用蛋白酶Factor Xa切除MBP标签后,两种重组蛋白的比活力均有提高,分别为258.13 U/mg和139.20 U/mg。重组NP1表现出良好的热稳定性,80℃温浴30 min后重组酶仍具有90%以上的活力。2.0 mmol/L Zn2+对NP1有比较明显的激活作用,相同浓度的Cu2+则对该酶有强烈的抑制作用。该研究实现了NP1在大肠杆菌系统中的功能性表达,为NP1纯酶的制备提供一个替代途径。  相似文献   
5.
虽然合成生物学还处于早期研究阶段,但最近十年,该领域取得了非常显著的研究进展。合成生物学是以工程学思想为基础,通过人工设计、改造基因线路,从而赋予细胞或生物体新的功能,现已广泛应用于各个领域。随着人们对基因线路设计的深入研究,使得合成生物学研究走向临床应用成为可能。本文将围绕哺乳动物合成生物学在疾病治疗方面的研究进展,介绍基因线路的设计思路和方法、不同诱导因子调控的开环式基因线路以及用于疾病诊疗的闭环式基因环路在生物医学领域的应用。最后对合成生物学走向临床治疗的应用前景和挑战进行展望。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号