首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   0篇
  国内免费   5篇
  2016年   1篇
  2014年   1篇
  2010年   1篇
  2009年   1篇
  2006年   1篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
用耗散结构理论对莫高窟园林用水的分析   总被引:1,自引:0,他引:1  
李红寿 《生态学报》2006,26(10):3454-3462
通过莫高窟园林用水的调查,发现平均灌溉量为8366mm,远高于敦煌农田的灌水量2250mm,并且全部通过土壤表面蒸发和植物蒸腾耗散掉了.这就出现了一个实际用水量很高的地方,它仍然表现为缺水的悖逆现象.而且也远大于以水面为基础当地的耗散量2486mm.应用 Penman的蒸散指数、Thornthwaite的蒸散指数、Holdridge生命地带指标等进行比较研究,结果仍然不能解释莫高窟存在的现象.通过对于莫高窟的温度、光照、湿度、风速、热量、土壤结构、浇灌方式等与水分耗散有关的因子进行深入的调查与分析后,发现这个现象与耗散结构理论相吻合.应用耗散结构理论解释了在莫高窟园林用水中存在的一个似非而是的问题.水的耗散结构理论对西北干旱地区的水资源利用有重要意义.应用耗散结构理论与前人对水分耗散方面的研究并不矛盾,完全可以在这一理论指导下统一起来,有望建立起统一的水分耗散应用模型.同时对与耗散结构理论相关的熵问题进行了探讨,认为这个问题与时间问题一样,是认识的主体——人的心理错觉,并没有物质上的实质.  相似文献   
2.
极干旱区深埋潜水蒸发量的测定   总被引:4,自引:0,他引:4  
李红寿  汪万福  张国彬  赵林毅 《生态学报》2010,30(24):6798-6803
在远离降雨的典型极干旱气候条件下,在敦煌莫高窟窟顶戈壁搭建封闭塑料拱棚,在棚内放置空调抑制“拱棚效应”。通过空调的制冷抑制拱棚的增温效应,通过空调的冷凝降低棚内的湿度,使棚内的温湿度与外界靠近,并通过空调冷凝排水量评估潜水蒸发强度。45d的监测表明:在潜水埋深超过200m的敦煌极干旱地区存在不少于0.0219mm/d的潜水蒸发。太阳辐射强度、温度、湿度对潜水蒸发有重要影响。潜水蒸发量的测定为利用潜水进行荒漠化的生态重建提供了基本的评估依据,对揭示极干旱区埋深较深的GSPAC水文循环和潜水开发有重要意义,对莫高窟的文物保护也非常关键。  相似文献   
3.
应用氢氧稳定同位素对极端干旱区蒸发水分来源的确定   总被引:1,自引:0,他引:1  
长期监测发现敦煌莫高窟窟顶戈壁存在稳定的蒸发水分。为了进一步厘清蒸发水分的来源,利用拱棚-凝结法定期收集蒸发水分,应用水同位素示踪原理监测凝结水分、莫高窟降水和潜水的δD和δ~(18)O值,以揭示戈壁蒸发水分的来源。结果表明,蒸发水分的δD、δ~(18)O平均值分别为-33.06‰和-5.33‰,莫高窟降水为-66.44‰和-8.57‰,潜水为-72.19‰和-9.75‰,说明当地潜水并非来自于莫高窟降水;通过经纬度和海拔,应用在线降水同位素计算的当地降水δD和δ~(18)O值(-60.00‰,-8.50‰)和降水加权平均值(-5.30‰,-0.75‰)同样表明,当地降水不是地下潜水的合理来源,而党河源区(野马山)的降水(-86.00‰,-12.00‰)才是地下潜水的真正来源。土壤水分蒸发实验与土壤垂直剖面水分检测表明,戈壁深厚包气带土壤在潜水水汽向上运移过程中选择了δ值相对较高的潜水水分,因此,戈壁蒸发水分来自地下潜水,存在清晰的来源通道。极干旱区蒸发水分来源的再确定为蒸发潜水的利用奠定了基础,对极干旱区生态恢复有重要意义,并为干旱、半干旱区地下水的利用提供了新视角,为莫高窟洞窟水分来源研究亦提供了重要参考。  相似文献   
4.
敦煌莫高窟干旱地区水分凝聚机理分析   总被引:2,自引:1,他引:1  
通过对敦煌莫高窟戈壁地质结构的调查和洞窟检测,结合气象资料对戈壁土壤水分凝聚机理进行了分析,并根据形成机理在野外进行了水分凝结的覆膜实验.结果表明,在莫高窟戈壁区的上层砾砂中,由于强烈的温度日较差变化,形成了凝结水分;另外源于地下深处的水分通过土壤盐分的吸湿吸附作用在地下10~40cm范围内相对富集,并由于剧烈的波动呈现时空异质性变化.将凝结、吸湿吸附等方式形成的土壤水分统称为凝聚水分.凝聚是水分存储于一定土壤的结构过程,与太阳辐射、温度、湿度等气候因子密切相关.变温层土壤的温度、盐分、湿度、结构、密闭程度、地热等对水分的凝聚有重要影响.水分的凝聚机理对干旱地区的生态建设和文物保护具有重要的现实意义.  相似文献   
5.
拱棚法监测表明极干旱区存在潜水蒸发,而土壤温湿度监测表明,土壤水分具备向下运转的条件,这意味着拱棚所监测的水分可能来自降水,极干旱区并不存在深埋潜水蒸发。因此,研究降水的最终去向非常重要。为此笔者应用拱棚-空调法进行对极干旱区降雨模拟回收。结果表明,在极干旱条件下占该区85%以上频次的5 mm的降水经90 d可完全蒸发和回收。回收过程中,棚内地上50 cm的相对湿度(RH)和绝对湿度(AH)分别较棚外增高12.10%和3.50 g/m3,这使降水的回收时间大为延长;另外,土壤内部的温湿度监测表明,洒水后30 cm土壤的温度、RH、AH分别高于棚外对照1.46℃、4.17%和2.50 g/m3,说明有一定数量的降水通过膜下土壤侧向流向了外部,增加了收集时间。回收实验证明极干旱区降水可完全蒸发,该区存在潜水蒸发与GSPAC(Groundwater-Soil-Plant-Atmosphere Continuum)水分的向上运转。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号