首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   1篇
  国内免费   11篇
  2023年   4篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2014年   1篇
  2010年   2篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
选择三峡库区的马尾松-栓皮栎混交林,分析不同浓度氮添加(0、30、60、90 kg N·hm-2 ·a-1)对土壤微生物生物量、酶活性和养分含量的影响,为在大气氮沉降持续增加的背景下预测该地区森林土壤碳动态提供科学依据。结果表明: 各氮添加处理下土壤有机碳、全氮和微生物生物量碳、氮、磷均显著提高,土壤pH值下降,全磷含量无显著变化。氮添加提高了各季节土壤中β-1-4葡萄糖苷酶、纤维二糖水解酶、酸性磷酸酶、N-乙酰氨基葡萄糖苷酶和过氧化物酶的活性,但抑制了多酚氧化酶的活性。土壤氧化酶活性存在显著的季节差异,其中过氧化物酶活性在5月、8月较高,多酚氧化酶活性在8月最高。土壤酶活性与土壤含水量、养分含量及微生物生物量碳、氮、磷存在显著的相关性,酶活性变化是多因子综合作用的结果。冗余分析表明,全氮和微生物生物量碳是驱动土壤酶活性的主要环境因子。氮沉降的持续增加会导致土壤酸化,同时也促进了当地马尾松-栓皮栎混交林土壤有机碳的周转和养分循环。  相似文献   
2.
为探究草原生态系统固碳能力,利用锡林浩特国家气候观象台2018—2021年的涡动相关资料分析了锡林浩特草原生态系统CO2通量的变化特征以及环境因子对CO2通量的影响,并对通量源区分布进行了探讨。结果表明:研究区全年盛行西南风,生长季的源区面积大于非生长季,大气稳定条件下的源区面积大于不稳定条件;90%贡献率的源区最大长度接近400 m,与经典法则估算的长度一致。锡林浩特草原净生态系统碳交换量(NEE)具有明显的日变化和季节变化,生长季白天为碳汇,夜间为碳源,非生长季白天和夜间均为弱碳源。2018—2021年,年总NEE分别为-15.59、-46.28、-41.94和-78.14 g C·m-2·a-1,平均值为-45.49 g C·m-2·a-1,表明锡林浩特草原有较强的固碳能力。饱和水汽压差和光合有效辐射有助于草原生态系统吸收大气中CO2;夜间,当温度高于0℃时,气温和土壤温度升高会促进植被呼吸作用释放CO2。  相似文献   
3.
以三峡库区马尾松人工林为对象,将土壤筛分为大团聚体(2000~8000μm)、粗砂粒(1000~2000μm)、小团聚体(250~1000μm)和微团聚体(<250μm)4个粒径,研究低、中、高氮添加处理(氮添加量分别为30、60、90 kg N·hm-2·a-1)下土壤酸解性有机氮组分和净氮矿化的变化。结果表明:不同处理下,团聚体净硝化速率为0.30~3.42 mg N·kg-1,占净氮矿化的80%以上。与对照相比,不同处理4个粒径的总氮含量分别提高24.1%~45.5%、6.4%~34.3%、7.9%~42.4%,净氮矿化速率分别提高1.3~7.2、1.4~6.6、1.8~12.9倍,而速效磷含量分别降低9.3%~36.9%、12.2%~56.7%、19.2%~61.9%。可酸解性有机氮组分、有机质含量以及净氨化、净硝化和净氮矿化速率均随着团聚体粒径的减小而增加,但速效磷含量变化呈相反的趋势。酸解性有机氮组分含量大小为:酸解氨基酸态氮>酸解铵态氮>酸解未知态氮>酸解氨基糖态氮。总氮是提高酸解性...  相似文献   
4.
小兴安岭4种原始红松林群落类型生长季土壤呼吸特征   总被引:4,自引:0,他引:4  
为阐明小兴安岭地带性植被原始红松林土壤呼吸各组分的碳排放速率及其对土壤水热变化的响应规律,采用挖壕法和红外气体分析法测定土壤表面CO2通量(Rs),确定4种原始红松林群落类型生长季的土壤总呼吸(Rt)中土壤微生物呼吸(Rh),根系呼吸(Rr)和凋落物呼吸(Rl)的贡献量动态变化及其影响因子。结果表明:生长季内,4种原始红松林群落类型的Rt、Rh、Rr具有明显的季节性变化,7-9月份较高,6月份和10月份较低。Rh对Rt的贡献量最高,平均在58.8%;Rr对Rt的贡献量次之,平均为26.5%;Rl对Rt的贡献量相对较小,平均为12.5%。生长季土壤呼吸速率与5cm深土壤温度相关性极显著(P0.01)。Rr和Rh的Q10值分别为2.88和2.23。表明根呼吸对土壤温度的敏感性高于微生物呼吸。生长季平均土壤呼吸速率的依次为:椴树红松林(6.38μmol·m-·2s-1)云冷杉红松林(6.32μmol·m-·2s-1)枫桦红松林(5.95μmol·m-·2s-1)蒙古栎红松林(2.86μmol·m-·2s-1)。4种原始叶红松林群落类型间的Rh和Rr也存在一定差异。  相似文献   
5.
以三峡库区马尾松人工林为对象,分析土壤微生物生物量、酶活性和养分含量对氮添加的初期响应规律,为预测该地区在大气氮沉降持续增加的背景下森林土壤的季节动态提供参考。结果表明:氮添加初期,中氮水平(60 kg hm-2 a-1)的氮添加处理使得各季节土壤β-1-4葡萄糖苷酶、N-乙酰氨基葡萄糖苷酶、酸性磷酸酶、多酚氧化酶、过氧化物酶活性均增加,高氮(90 kg hm-2 a-1)水平的添加处理增加了土壤有机碳、全氮和微生物生物量碳、氮、磷的含量和酸性磷酸酶及多酚氧化酶活性,降低了土壤pH值、全磷含量和β-1-4葡萄糖苷酶及N-乙酰氨基葡萄糖苷酶活性。土壤酶活性和微生物生物量存在明显的季节变化,秋季水解酶活性和微生物生物量碳、磷含量显著高于春夏两季,而氧化酶活性和微生物生物量氮含量则是春夏季较高。土壤酶活性与季节、土壤含水量、养分含量及微生物生物量碳氮磷含量存在显著的相关性,酶活性变化是多因子综合作用的结果,冗余分析表明土壤含水量、微生物生物量碳、氮、磷和全氮是驱动土壤酶活性的主要环境因子。氮沉降的持续增加会加速当地马尾松人工林土壤腐殖质的形成,增加有机碳的积累,导致土壤酸化,并产生磷限制。  相似文献   
6.
土壤湿度对东北3种主要树种凋落物分解的影响   总被引:1,自引:0,他引:1  
结合丰林国家自然保护区原始阔叶红松林1998-2017年表层(0~10 cm)土壤湿度监测数据,评估了全球变化背景下土壤湿度变化对东北主要森林树种红松、臭冷杉和白桦凋落物分解的影响.结果表明: 在同一土壤湿度水平下,凋落物分解速率随着凋落物质量的增加而增大,即表现为白桦>臭冷杉>红松.凋落物的分解速率随着土壤湿度的降低而减小.白桦、臭冷杉和红松3种凋落物的土壤湿度敏感性指数(M10)分别为0.782、0.789和0.827,土壤湿度水平每降低10%,初始分解速率分别减小21.8%、21.1%和17.3%.高质量凋落物(高氮含量、低碳氮比、低木质素含量)的分解速率对土壤湿度变化的响应更敏感.凋落物分解速率在不同凋落物类型间的差异随着土壤湿度的降低而缩小.近20年间,原始阔叶红松林土壤湿度呈显著减少趋势,对凋落物分解表现为抑制作用.在全球变化背景下,随着气温的升高,土壤湿度将继续降低,对凋落物的抑制作用会进一步增强,并将部分抵消因温度升高所带来的凋落物分解速率增大的压力.  相似文献   
7.
土壤氮库是生态系统氮素重要的源和汇。以三峡库区马尾松(Pinus massoniana)人工林为研究对象,从团聚体视角出发分析土壤养分和酶活性对氮添加的响应规律,以及相应的变化对氮矿化的影响,为预测该地区在大气氮沉降持续增加的背景下土壤氮动态提供参考。设置4种量的氮添加处理(N0:0 kg N hm-2 a-1;N30:30 kg N hm-2 a-1;N60:60 kg N hm-2 a-1;N90:90 kg N hm-2 a-1),将土壤按粒径分为>2000 μm (大团聚体)、250-2000 μm (小团聚体)和<250 μm (微团聚体)3个组分的团聚体,观察团聚体氮矿化特征。结果表明:(1)与对照相比,N30和N60处理提高了有机质(SOM)含量,但土壤SOM和全氮(TN)含量在N90下开始出现下降;氮添加降低了土壤速效磷(aP)含量,在小团聚体中表现最为显著。除微团聚体中的POD和NAG以外,其余3种酶的活性均在N30和N60处理之下被提高。(2)土壤平均净硝化速率整体高于土壤平均净氨化速率;大团聚体和小团聚体中净氨化速率在氮添加处理后显著降低,大团聚体净硝化速率低于其他两个粒径;土壤净氮转化速率在N90处理下最高。(3)土壤养分和无机氮含量与土壤酸性磷酸酶(AP)、N-乙酰-β-D-葡糖苷酶(NAG)、过氧化物酶(POD)、硝酸还原酶(NR)和脲酶(UE)的活性呈显著相关,酶活性变化是多因子综合作用的结果;RDA分析显示,UE与土壤净氨化速率存在显著正相关,NAG和POD是与净氮转化速率分别存在显著正相关和显著负相关的关键土壤酶。综上所述,硝化作用是土壤净氮转化的主要贡献者,微团聚体在土壤氮矿化中发挥主要作用,NAG和POD是改变土壤净氮转化的主要生物酶。此外,氮添加会引起土壤氮素的流失,引起土壤的磷限制,并对土壤养分循环产生显著影响。  相似文献   
8.
于不同温度(25℃/20℃、35℃/30℃和40℃/35℃)下测定接种丛枝菌根真菌(arbuscular mycorrhizal fungi,AMF)摩西斗管囊霉Funneliformis mosseae、变形球囊霉Glomus versiformeF. mosseae+G. versiforme 混合菌种处理对狭叶薰衣草Lavandula angustifolia耐热性的影响。结果表明,供试AMF能与狭叶薰衣草根系形成菌根共生体,以混合菌种处理的侵染率最高,达到68%。40℃/35℃下,与不接种AMF对照相比,混合菌种处理的狭叶薰衣草叶片可溶性糖、可溶性蛋白、脯氨酸和叶绿素等含量以及根系活力分别提高了46%、68%、65%、29%和70%;与不接种AMF对照相比,3种温度处理下接种AMF显著增加了狭叶薰衣草植株超氧化物歧化酶、过氧化物酶、过氧化氢酶、抗坏血酸过氧化物酶和硝酸还原酶活性,而降低相对电导率及丙二醛含量。表明接种AMF能增强狭叶薰衣草抗氧化酶活性,减轻高温造成的伤害,增强耐热性,与单一接种相比以混合接种摩西斗管囊霉和变形球囊霉提高狭叶薰衣草耐热性的效应最大。  相似文献   
9.
量化植物地上部和地下部元素含量对于理解和预测植物养分平衡如何响应大气氮沉降的变化至关重要。通过盆栽试验研究了氮沉降增加背景下外生菌根真菌对马尾松幼苗营养元素的影响。对马尾松幼苗进行了接种两种外生菌根真菌:(彩色豆马勃(Pisolithus tinctorius,Pt)与厚环乳牛肝菌(Suillus grevillei,Sg))以及4种氮素浓度添加:0 kg N hm-2a-1(N0)、正常氮沉降30 kg N hm-2a-1(N30)、中度氮沉降60 kg N hm-2a-1(N60)、重度氮沉降90 kg N hm-2a-1(N90),共12个处理,测定了马尾松地上部和地下部大量元素和微量元素的含量。结果表明:施氮改变了营养元素在马尾松幼苗地上部和地下部的含量,马尾松幼苗磷(P)、钙(Ca)、铁(Fe)、锰(Mn)等元素均在N60时达到临界值,而当输入的量超过了马尾松对氮的需求时,氮沉降会使马尾松营养元素含量较最适浓度时降低,地上部碳(C)随施氮浓度的升高先升高后降低,N随施氮浓度的升高而升高,根系和叶片钾(K)、Ca、镁(Mg)均随施氮浓度的升高而降低,施氮也降低了根系C及微量元素的含量。但在同一施氮浓度下,接种外生菌根真菌(EMF)后能够提高大多数元素的含量,N90时接种厚环乳牛肝菌(Sg)和彩色豆马勃(Pt)的叶片N含量与对照相比分别提高112.6%和138.6%,根系N含量分别提高73.1%、71.6%;N60时接种Sg和Pt的植株叶片P含量比不施氮未接种对照分别提高了166.3%、132.9%,根系P含量分别提高了40.8%、38.5%。EMF能够维持植物养分平衡,从而降低高施氮量对植物的影响效果。这为未来气候变化情景中氮沉降增加下接种EMF可以调节植物元素含量,从而达到更适应环境的元素平衡来促进生长提供理论依据。  相似文献   
10.
莱州湾及黄河口水域鱼类群落结构的季节变化   总被引:10,自引:0,他引:10  
根据2011年5月—2012年4月对莱州湾及黄河口水域9个航次的渔业底拖网调查数据,对该水域鱼类群落结构特征及其季节变化进行了初步研究。结果表明:莱州湾及黄河口水域共捕获鱼类62种,隶属于11目、34科、53属,主要由暖水种和暖温种组成,其中鲈形目种类最多(37种),其次是鲉形目(7种)和鲽形目(6种)。春季优势种包括矛尾鰕虎鱼(Chaeturichthys stigmatias)、鲱衔(Callionymus beniteguri)、短吻红舌鳎(Cynoglossus joyneri)、矛尾复鰕虎鱼(Synechogobius hasta)和方氏云鳚(Enedrias fangi),其渔获量占总渔获量的70.8%;夏季包括矛尾鰕虎鱼、斑鰶(Konosirus punctatus)、鲱衔和短吻红舌鳎,占总渔获量的68.1%;秋季包括矛尾鰕虎鱼、赤鼻棱鳀(Thrissa kammalensis)、鳀(Engraulis japonicus)、青鳞小沙丁鱼(Sardinella zunasi)、斑鰶、小黄鱼(Larimichthys polyactis)和矛尾复鰕虎鱼,占总渔获量的87.1%。平均单位时间渔获量存在显著季节变化,以秋季最高(22.63kg/h),其次是夏季(16.75kg/h),春季最低(1.29kg/h)。春季(5月)平均单位时间渔获量为0.69kg/h,为1959年、2003年、2006年和2008年春季(5月)的0.3%、0.3%、1.7%和541.2%,鱼类资源量虽有所回升,但总体呈大幅下降的趋势。鱼类种类数、丰富度指数和多样性指数夏季较高,秋季次之,春季最低,但是以渔获尾数计算的均匀度指数,夏季最大,春季最小,以渔获量计算的均匀度指数则相反,且丰富度指数和多样性指数与表层温度呈极显著相关(P0.01),丰富度指数和均匀度指数与表层盐度呈极显著相关(P0.01)。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号