首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   0篇
  国内免费   14篇
  2022年   1篇
  2020年   2篇
  2019年   2篇
  2018年   3篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2010年   1篇
  2009年   1篇
排序方式: 共有14条查询结果,搜索用时 281 毫秒
1.
施用生物炭6年后对稻田土壤酶活性及肥力的影响   总被引:4,自引:0,他引:4  
利用田间定位试验,研究0(BC0)、7.5(BC1)、15(BC2)和22.5(BC3)t·hm-2水稻秸秆生物炭及3.75 t·hm-2水稻秸秆(STR)一次性施加6年后对稻田土壤肥力及酶活性的影响.结果表明: 施用生物炭6年后土壤有机碳、有效磷和速效钾含量显著增加,增幅分别为34.6%、12.4%和26.2%,土壤pH值和容重显著降低,但对土壤全氮含量无显著影响.土壤脲酶和酸性磷酸酶的活性显著增加,土壤荧光素二乙酸酯酶(FDA水解酶)和芳基硫酸酯酶的活性受到不同程度的抑制,其中,BC2处理的土壤脲酶活性增加量最大,增幅为36.5%.土壤酸性磷酸酶活性随着生物炭施加量的增加而增加,与土壤速效磷含量呈显著正相关关系;土壤FDA水解酶和脲酶主要与土壤速效钾含量有关;酸性磷酸酶和芳基硫酸酯酶与土壤容重呈显著正相关.施用生物炭6年后土壤脱氢酶和多酚氧化酶活性明显升高,增幅分别为48.8%和27.5%,而过氧化氢酶活性逐渐下降,且显著低于对照BC0.STR处理显著增加了土壤脲酶、FDA水解酶、脱氢酶、酸性磷酸酶和芳基硫酸酯酶的活性,降低了过氧化氢酶和多酚氧化酶的活性,降幅分别为23.4%和15.9%.  相似文献   
2.
生物炭的稳定性及其对矿物改性的响应机制研究进展   总被引:3,自引:0,他引:3  
生物炭具有高度的碳素稳定性,是一种能有效缓解温室效应的固碳材料.研发碳素持留率高和稳定性强的生物炭对固碳减排具有重要意义.矿物改性处理能对生物炭的稳定性起调控作用,但目前相关研究并未得到足够重视,相应调控机理尚不十分清楚.本研究首先对生物炭稳定性的评价指标进行了归纳,主要包括H/C原子比、O/C原子比、稳定性系数R50、挥发性物质含量、碳素热失重率、碳素(化学)氧化损失率、微生物矿化量等.其次,在分析生物炭稳定性影响因素(如原料类型、炭化条件、外界环境等)的基础上,综述了矿物改性对生物炭稳定性影响的研究进展,并探讨了稳定性增强和减弱的响应机制,认为生物炭稳定性的增强响应主要是基于矿物本身的物理阻隔作用,以及矿物与生物炭之间通过交互作用形成的有机矿物复合体对生物炭起到的保护作用,在一定程度上抑制生物炭的降解;而生物炭稳定性的减弱响应则主要与特殊矿物组分有关,例如含铁矿物组分在高温下促进生物炭的降解.最后对未来的研究方向进行了展望,以期进一步推动生物炭固碳减排技术的发展,并为获得稳定性更强的生物炭提供技术支撑和理论依据.  相似文献   
3.
生物炭对农田土壤氨挥发的影响机制研究进展   总被引:1,自引:0,他引:1  
降低土壤氨挥发量是农田生态系统中减少土壤氮素损失、提高氮肥利用率的关键途径之一。生物炭具有独特的理化性质,施入土壤后可改变土壤理化性状,影响土壤氮素循环,并对农田土壤中氨挥发产生重要的影响。本文首先介绍了稻田和旱田两种土地利用方式下农田氨挥发过程及其影响因素(气候条件、土壤环境、施肥管理等);其次,重点综述了生物炭对农田生态系统氨挥发影响的研究进展,并从物理吸附机制、气液平衡机制、生物化学过程调节机制等方面探讨了生物炭介入下农田土壤氨挥发的响应机制,认为土壤氨挥发减排的响应主要是基于生物炭表面含氧官能团对土壤NH4+和NH3的吸附作用及促进土壤硝化作用;而生物炭增加土壤氨挥发排放主要与生物炭提高土壤pH值和透气性、增强土壤有机氮矿化微生物活性有关。最后,对生物炭减少土壤氨挥发、提高氮肥利用率的研究方向进行了展望。  相似文献   
4.
以蚕丝被废弃物为原料,在300、500和700 ℃高温缺氧条件下热解炭化制备成3种生物炭(BC300、BC500和BC700).利用扫描电镜(SEM)、傅里叶红外光谱仪(FT-IR)、X-射线衍射仪(XRD)、比表面积分析仪等对其理化性质进行表征,并研究了不同温度下制备的生物炭对溶液中Cd2+的吸附特性.结果表明: 随着炭化温度上升,BET比表面积、pH、灰分均增大,生物炭表面形态结构越来越不规则.XRD结果显示:不同温度下获得的生物炭中均含有一定量的方解石,FT-IR光谱图上的峰主要为-OH和方解石典型的吸收峰;pH对生物炭吸附Cd2+的影响不大;Langmuir方程能更好地拟合3种生物炭对Cd2+的吸附等温过程,其最大吸附量分别为25.61、52.41和91.07 mg·g-1.3种生物炭对Cd2+吸附过程均更符合准二级动力学方程,且BC700对Cd2+的吸附效果最佳.进一步研究离子浓度及阳离子共存对BC700吸附Cd2+的影响,结果显示: NaCl浓度越高,对Cd2+的吸附抑制越明显;共存阳离子中,Ca2+和Mg2+对Cd2+的吸附抑制更明显,而K+几乎无影响.因此,以蚕丝被废弃物制备的生物炭作为去除水体中Cd2+的吸附剂具有较强的应用潜力.  相似文献   
5.
以蚕丝被废弃物为原料,在300、500和700℃高温缺氧条件下热解炭化制备成3种生物炭(BC300、BC500和BC700).利用扫描电镜(SEM)、傅里叶红外光谱仪(FT-IR)、X-射线衍射仪(XRD)、比表面积分析仪等对其理化性质进行表征,并研究了不同温度下制备的生物炭对溶液中Cd~(2+)的吸附特性.结果表明:随着炭化温度上升,BET比表面积、pH、灰分均增大,生物炭表面形态结构越来越不规则.XRD结果显示:不同温度下获得的生物炭中均含有一定量的方解石,FT-IR光谱图上的峰主要为-OH和方解石典型的吸收峰;pH对生物炭吸附Cd~(2+)的影响不大;Langmuir方程能更好地拟合3种生物炭对Cd~(2+)的吸附等温过程,其最大吸附量分别为25.61、52.41和91.07 mg·g-1.3种生物炭对Cd~(2+)吸附过程均更符合准二级动力学方程,且BC700对Cd~(2+)的吸附效果最佳.进一步研究离子浓度及阳离子共存对BC700吸附Cd~(2+)的影响,结果显示:NaCl浓度越高,对Cd~(2+)的吸附抑制越明显;共存阳离子中,Cd~(2+)和Mg~(2+)对Cd~(2+)的吸附抑制更明显,而K~+几乎无影响.因此,以蚕丝被废弃物制备的生物炭作为去除水体中Cd~(2+)的吸附剂具有较强的应用潜力.  相似文献   
6.
畜禽粪便堆肥过程中氮素的损失与控制   总被引:37,自引:0,他引:37  
堆肥是实现畜禽粪便处理及资源化利用的有效途径,然而畜禽粪便堆肥过程中氮素损失较严重,对氮素损失与控制的研究可为有效控制氮素损失提供理论基础和实践参考.本文简述了畜禽粪便堆肥过程中氮素转化及主要损失途径,总结了影响堆肥氮素损失的主要因素(包括堆肥物料初始特性、堆肥环境参数和堆肥工艺条件),并综述了氮素损失控制措施(调节C、N代谢,改变氮素形态,添加NH3吸附剂和调节通风与控温措施)的研究进展,此外,对未来的研究方向进行了展望.  相似文献   
7.
施用生物炭后土壤有机碳的近红外光谱模型研究与应用   总被引:3,自引:0,他引:3  
土壤有机碳是影响土壤肥力的最重要因素之一。生物炭由于具有高度芳香化碳结构和发达孔隙结构等特性,可以作为一种土壤改良剂,提高土壤有机碳含量,改善土壤物理结构,近些年成为农业环境领域研究的热点。分别采用传统方法和可见光近红外光谱(VIS-NIRS,400-2500 nm)技术对施加不同用量生物炭的土壤有机碳含量进行检测和对比分析,以期为含生物炭土壤的有机碳分析建立有效预测模型。通过比较不同样本选择方法(Kennard-Stone(KS),Random selection(RS)和Sample set partitioning based on joint x-y distances(SPXY))和光谱预处理方法(Savitzky-Golay平滑(SG)、倒数的对数log(1/R)、标准正态变量变换(SNV)、一阶导数(Der1)、二阶导数(Der2)和多元散射校正(MSC)),以3种模型(组合间隔偏最小二乘模型(Synergy Interval Partial Least Squares,siPLS),遗传算法-支持向量机模型(Genetic Algorithm-Support vector machine,GA-SVM)和随机森林模型(Random Forest,RF))来建立生物炭土壤有机碳预测模型。结果表明:(1)施加生物炭增加了土壤有机碳含量,增加幅度随生物炭添加量的提高呈增加趋势;(2)土壤反射率随土壤有机碳含量的增加而降低,在1410、1920和2200 nm光谱附近存在明显的吸收谷;(3)对比3种样本选择方法,KS方法所划分的样本集相对于RS方法和SPXY方法更适用于生物炭土壤有机碳模型的建立;(4)以SG+MSC预处理结合GA-SVM方法建立的模型精度最高,校正集的Rcal2和RMSECV值分别为0.9526和0.4839,验证集的R2val和RMSEP值分别为0.8598和0.9987,RPD值为2.6017。该模型因具有精度高且模拟效果较好等优点,可用于含生物炭土壤的有机碳含量的科学预测。  相似文献   
8.
土壤生物质炭环境行为与环境效应   总被引:71,自引:0,他引:71  
生物质炭具有高度稳定性和较强的吸附性能,可从气候、地质等多方面对环境产生影响,在全球气候变化、碳生物地球化学循环以及环境系统中发挥着非常重要的作用,长期以来成为国内外大气科学、地质学和环境科学领域研究的热点.作为土壤腐殖质中高度芳香化结构组分的可能来源,生物质炭对增加土壤碳库贮量、提高土壤肥力以及维持土壤生态系统平衡意义重大.本文重点概述了生物质炭特性、生物质炭生物与非生物氧化机理、生物质炭对全球气候变化的影响以及土壤生物质炭环境效应等方面的国内外研究进展,并对今后生物质炭在土壤生态系统中的环境行为和环境效应研究进行了简要的展望.  相似文献   
9.
生物质炭化还田对稻田温室气体排放及土壤理化性质的影响   总被引:16,自引:0,他引:16  
通过水稻种植田间试验,研究了水稻秸秆直接还田、水稻秸秆与生活垃圾炭化后还田对稻田温室气体CH4、CO2和N2O排放及土壤理化性质和水稻产量的影响.结果表明:与直接还田相比,秸秆炭化后还田可显著降低稻田CH4和N2O的累积排放量,降幅分别为64.2%~78.5%和16.3%~18.4%.与不添加生物炭相比,无论种植水稻与否,添加秸秆炭和垃圾炭均显著降低了稻田N2O的累积排放量;不种植水稻情况下,添加垃圾炭显著降低了稻田CO2的累积排放量,降幅为25.3%.秸秆炭对提高稻田土壤pH和速效钾含量的作用优于垃圾炭.两种生物炭均能显著提高稻田土壤有机碳含量,但对土壤容重、全氮、有效磷、阳离子交换量及水稻籽粒产量均未产生显著影响.与秸秆直接还田相比,秸秆炭化后还田对水稻增产的效果更佳.  相似文献   
10.
探究施用生物炭和脲酶抑制剂/硝化抑制剂对亚热带水稻土氮素硝化过程的调控作用、氨挥发和N2O排放的温室效应潜能的影响,确定生物炭与硝化和脲酶抑制剂的最佳组合,可为削减施用氮肥带来的活性氮气体排放对环境的负面风险提供理论依据。本研究采用室内好气培养试验方式,以单施尿素(N)为对照,设置7个试验处理[尿素+生物炭(NB),尿素+硝化抑制剂(N+NI),尿素+脲酶抑制剂(N+UI),尿素+硝化抑制剂+脲酶抑制剂(N+NIUI),尿素+硝化抑制剂+生物炭(NB+NI),尿素+脲酶抑制剂+生物炭(NB+UI),尿素+硝化抑制剂+脲酶抑制剂+生物炭(NB+NIUI)],观测生物炭与脲酶抑制剂(NBPT)/硝化抑制剂(DMPP)配施下土壤无机氮含量、N2O排放及氨挥发的变化动态。结果表明: 1)培养期间,与N处理(5.11 mg N·kg-1·d-1)相比,NB处理的土壤硝化速率常数显著增加33.9%,N+NI处理显著降低22.9%;NB处理显著提高了氨氧化细菌(AOB)丰度,增幅达56.0%。2)与N处理相比,N+NI和NB+NI处理的NH3累积排放量均显著增加约49%;N+UI处理降低了NH3累积损失量,NB+UI处理抑制效果更明显。3)各处理的N2O排放速率高峰均出现在施肥后前10 d;NB处理的N2O排放高峰出现最早,N处理排放速率最高(5.87 μg·kg-1·h-1);硝化抑制剂与脲酶抑制剂配施减少土壤N2O排放的效果最佳。综合计算各处理直接N2O和间接N2O(NH3)排放产生的温室效应潜能(GWP)发现,N+NI和NB+NI处理较N处理分别增加了34.8%和40.9%,而NB和NB+UI处理的GWP显著降低了45.9%和60.5%。因此,生物炭与脲酶抑制剂配施对降低土壤活性氮气体排放所产生的温室效应潜能效果最佳。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号