首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   0篇
  国内免费   2篇
  2019年   2篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
土壤重金属积累严重影响植物生长和生态系统平衡,探寻植物对重金属的耐性机理尤为重要.菠菜可能具有一定的耐铜性,但Cu对其矿质元素吸收、细胞超微结构等方面的耐性机理尚不明确.本研究以菠菜幼苗为研究对象,通过盆栽试验,探究不同浓度铜处理对菠菜幼苗生长、矿质元素吸收、叶片细胞超微结构等指标的影响.结果表明: 100 mg·L-1 CuSO4处理浓度时,菠菜幼苗根Cu2+积累量小于地上部,其根系生长量增加,地上部生长量稍有下降,继续增加铜处理浓度,植物体各器官生长参数均呈下降趋势.低浓度铜处理时(<400 mg·L-1 CuSO4),菠菜幼苗叶N、K、Ca、Mg、Fe含量增加,P含量减少;根N、P、K含量减少,Ca、Mg、Fe含量增加;叶片细胞内各细胞器清晰可见,基粒片层排列仍较为整齐,叶绿体内外膜完整.高浓度铜处理时(>600 mg·L-1 CuSO4),菠菜幼苗叶N含量增加,P、K、Ca、Mg、Fe含量减少;根N、P、K、Ca、Mg、Fe含量均减少;叶片细胞内叶绿体变圆,叶绿体膜变薄,基质、基粒片层变少,层堆积高度下降,细胞核解体,液泡、细胞壁中有黑色小点分布,可能是大量Cu2+聚集导致细胞内膨压增大所致.低浓度铜处理并未对菠菜幼苗的生长生理特性产生明显的负面影响,而高浓度铜处理并未终止菠菜幼苗的生长.说明菠菜幼苗具有一定的耐铜性.  相似文献   
2.
王玲  李昆  宋雅琦  公勤  李兆华 《生态学报》2019,39(20):7602-7610
土壤不仅能够产生、排放温室气体N_2O,还具有截留、吸收、转化N_2O的能力。土壤消耗N_2O已经成为很重要的一种降低大气N_2O浓度的途径,但目前关于土壤N_2O消耗过程及其微生物调控机制的系统研究较为缺乏。试验以浅表层水稻土柱(0—5 cm)为研究对象,通过外源添加N_2O气体研究N_2O迁移通过淹水土柱的动态过程,以及N_2O消耗能力与氧化亚氮还原酶基因丰度变化和其他土壤养分含量变化的联系,揭示浅表层水稻土N_2O消纳量与N_2O还原微生物之间的耦合关系。结果显示,淹水厌氧条件下5 cm土壤深度外源添加的N_2O迁移通过浅表层土柱后,仅有7.17—9.80%部分逸散出土表,表明0—5 cm淹水水稻土层具有极强的N_2O截留能力(90%以上)而减少N_2O净排放量。排放出土表的N_2O也可被淹水土柱继续吸收消耗,且吸收转化速率随N_2O浓度增加而大幅提高,最高可达到3896.75μg N m~(-2) h~(-1)。与此同时,土壤DOC含量大量消耗,含nosZⅠ基因的反硝化微生物数量显著增长(P0.01),而nosZⅡ基因丰度的无显著变化。说明高浓度N_2O添加能够促进淹水土壤N_2O吸收消耗能力,此刺激作用可能主要由含nosZⅠ基因的N_2O还原微生物进行调控。浅表层土壤强大的N_2O吸收消耗功能可进一步深入系统研究,为实践温室气体减排提供理论基础。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号