首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   97758篇
  免费   10864篇
  国内免费   6111篇
  2023年   1203篇
  2022年   1541篇
  2021年   3863篇
  2020年   3633篇
  2019年   4176篇
  2018年   3980篇
  2017年   3162篇
  2016年   4242篇
  2015年   6325篇
  2014年   7619篇
  2013年   7868篇
  2012年   9421篇
  2011年   8617篇
  2010年   5446篇
  2009年   4851篇
  2008年   5495篇
  2007年   4953篇
  2006年   4336篇
  2005年   3589篇
  2004年   2936篇
  2003年   2810篇
  2002年   2239篇
  2001年   1636篇
  2000年   1523篇
  1999年   1388篇
  1998年   858篇
  1997年   753篇
  1996年   722篇
  1995年   655篇
  1994年   622篇
  1993年   454篇
  1992年   618篇
  1991年   457篇
  1990年   390篇
  1989年   351篇
  1988年   266篇
  1987年   234篇
  1986年   226篇
  1985年   210篇
  1984年   120篇
  1983年   132篇
  1982年   94篇
  1981年   54篇
  1980年   43篇
  1979年   75篇
  1977年   42篇
  1976年   51篇
  1974年   61篇
  1973年   57篇
  1972年   60篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
It was found that S-adenosylmethionine (SAM) could effectively improve avermectin titer with 30–60 μg/mL addition to FH medium. To clearly elucidate the mechanism of SAM on intracellular metabolites of Streptomyces avermitilis, a GC–MS-based comparative metabolomics approach was carried out. First, 230 intracellular metabolites were identified and 14 of them remarkably influenced avermectin biosynthesis were discriminative biomarkers between non-SAM groups and SAM-treated groups by principal components analysis (PCA) and partial least squares (PLS). Based on further key metabolic pathway analyses, these biomarkers, such as glucose, oxaloacetic acid, fatty acids (in soybean oil), threonine, valine, and leucine, were identified as potentially beneficial precursors and added in medium. Compared with single-precursor feeding, the combined feeding of the precursors and SAM markedly increased the avermectin titer. The co-feeding approach not only directly verified our hypothesis on the mechanism of SAM by comparative metabolomics, but also provided a novel strategy to increase avermectin production.  相似文献   
2.
Kernel size and kernel weight are important factors possibly involved in the determination of grain yield in maize, so identifying the genetic basis of kernel-related traits provides insights into the breeding of high-yield maize varieties. Kernel length (KL), kernel width (KW) and hundred kernel weight (HKW) were evaluated in three various planting conditions for the 240 field-grown double haploid (DH) lines derived from the single-cross hybrid Xianyu335. Variations in KL, KW and HKW were observed among DH lines, and all three traits showed a broad sense heritability of 76%. A total of 964 single nucleotide polymorphisms (SNPs) from the MaizeSNP3072 chip was utilised to create a high-density genetic map of 1546.4 cM and to identify quantitative trait loci (QTLs). Using composite interval mapping, a total of five, seven and five QTLs have been mapped for KL, KW and HKW, respectively. qkl1-2 and qkl4-1 explained 17.8% and 14.2% of the phenotypic variation in KL, respectively, and the other three QTLs contributed 3.2–4.0%. The phenotypic variation explained (PVE) of seven QTLs responsible for KW ranged from 3.3 to 9.5%. Three QTLs for HKW, qhkw1, qhkw5 and qhkw10 each explained more than 10% of the phenotypic variation, and qhkw4 and qhkw9 accounted for 3.0% and 6.0%, respectively. Due to their detection in multiple planting environments, the loci mapped here appear to be potential targets for the improvement of maize grain yield.  相似文献   
3.
α1‐adrenoceptors (α1‐ARs) stimulation has been found to enhance excitatory processes in many brain regions. A recent study in our laboratory showed that α1‐ARs stimulation enhances glutamatergic transmission via both pre‐ and post‐synaptic mechanisms in layer V/VI pyramidal cells of the rat medial prefrontal cortex (mPFC). However, a number of pre‐synaptic mechanisms may contribute to α1‐ARs‐induced enhancement of glutamate release. In this study, we blocked the possible post‐synaptic action mediated by α1‐ARs to investigate how α1‐ARs activation regulates pre‐synaptic glutamate release in layer V/VI pyramidal neurons of mPFC. We found that the α1‐ARs agonist phenylephrine (Phe) induced a significant enhancement of glutamatergic transmission. The Phe‐induced potentiation was mediated by enhancing pre‐synaptic glutamate release probability and increasing the number of release vesicles via a protein kinase C‐dependent pathway. The mechanisms of Phe‐induced potentiation included interaction with both glutamate release machinery and N‐type Ca2+ channels, probably via a pre‐synaptic Gq/phospholipase C/protein kinase C pathway. Our results may provide a cellular and molecular mechanism that helps explain α1‐ARs‐mediated influence on PFC cognitive functions.

  相似文献   

4.
5.
Chronic hepatitis is a major cause of liver cancer, so earlier treatment of hepatitis might be reducing liver cancer incidence. Hepatitis can be induced in mice by treatment with Concanavalin A (Con A); the resulting liver injury causes significant CD4+ T cell activation and infiltration. In these T cells, Roquin, a ring-type E3 ubiquitin ligase, is activated. To investigate the role of Roquin, we examined Con A-induced liver injury and T cell infiltration in transgenic (Tg) mice overexpressing Roquin specifically in T cells. In Roquin Tg mice, Con A treatment caused greater increases in both the levels of liver injury enzymes and liver tissue apoptosis, as revealed by TUNEL and H&E staining, than wild type (WT) mice. Further, Roquin Tg mice respond to Con A treatment with greater increases in the T cell population, particularly Th17 cells, though Treg cell counts are lower. Roquin overexpression also enhances increases in pro-inflammatory cytokines, including IFN-γ, TNF-α and IL-6, upon liver injury. Furthermore, Roquin regulates the immune response and apoptosis in Con A induced hepatitis via STATs, Bax and Bcl2. These findings suggest that over-expression of Roquin exacerbates T-cell mediated hepatitis.  相似文献   
6.
Transforming growth factor-β (TGF-β) signaling has been prominently implicated in the pathogenesis of vascular remodeling, especially the initiation and progression of flow-induced vascular remodeling. Smooth muscle cells (SMCs) are the principal resident cells in arterial wall and are critical for arterial remodeling. However, the role of TGF-β signaling in SMC for flow-induced vascular remodeling remains unknown. Therefore, the goal of our study was to determine the effect of TGF-β pathway in SMC for vascular remodeling, by using a genetical smooth muscle-specific (SM-specific) TGF-β type II receptor (Tgfbr2) deletion mice model. Mice deficient in the expression of Tgfbr2 (MyhCre.Tgfbr2f/f) and their corresponding wild-type background mice (MyhCre.Tgfbr2WT/WT) underwent partial ligation of left common carotid artery for 1, 2, or 4 weeks. Then the carotid arteries were harvested and indicated that the disruption of Tgfbr2 in SMC provided prominent inhibition of vascular remodeling. And the thickening of carotid media, proliferation of SMC, infiltration of macrophage, and expression of matrix metalloproteinase (MMP) were all significantly attenuated in Tgfbr2 disruption mice. Our study demonstrated, for the first time, that the TGF-β signaling in SMC plays an essential role in flow-induced vascular remodeling and disruption can prevent this process.  相似文献   
7.
Here we explored the impact of hydrogen sulfide (H2S) on biophysical properties of the primary human airway smooth muscle (ASM)–the end effector of acute airway narrowing in asthma. Using magnetic twisting cytometry (MTC), we measured dynamic changes in the stiffness of isolated ASM, at the single-cell level, in response to varying doses of GYY4137 (1–10 mM). GYY4137 slowly released appreciable levels of H2S in the range of 10–275 μM, and H2S released was long lived. In isolated human ASM cells, GYY4137 acutely decreased stiffness (i.e. an indicator of the single-cell relaxation) in a dose-dependent fashion, and stiffness decreases were sustained in culture for 24 h. Human ASM cells showed protein expressions of cystathionine-γ-lyase (CSE; a H2S synthesizing enzyme) and ATP-sensitive potassium (KATP) channels. The KATP channel opener pinacidil effectively relaxed isolated ASM cells. In addition, pinacidil-induced ASM relaxation was completely inhibited by the treatment of cells with the KATP channel blocker glibenclamide. Glibenclamide also markedly attenuated GYY4137-mediated relaxation of isolated human ASM cells. Taken together, our findings demonstrate that H2S causes the relaxation of human ASM and implicate as well the role for sarcolemmal KATP channels. Finally, given that ASM cells express intrinsic enzymatic machinery of generating H2S, we suggest thereby this class of gasotransmitter can be further exploited for potential therapy against obstructive lung disease.  相似文献   
8.
Cholesterosis is a disease of cholesterol metabolism characterized by the presence of excessive lipid droplets in the cytoplasm. These lipid droplets are mainly composed of cholesterol esters derived from free cholesterol. The removal of excess cholesterol from gallbladder epithelial cells (GBECs) is very important for the maintenance of intracellular cholesterol homeostasis and the preservation of gallbladder function. Several lines of evidence have indicated that the activation of either peroxisome proliferator-activated receptor gamma (PPARγ) or liver X receptor α (LXRα) relates to cholesterol efflux. While pioglitazone can regulate the activation of PPARγ, 22(R)-hydroxycholesterol can activate LXRα and is a metabolic intermediate in the biosynthesis of steroid hormones. However, the effect of 22(R)-hydroxycholesterol in combination with pioglitazone on cholesterosis of the gallbladder is unclear. GBECs were treated with pioglitazone, 22(R)-hydroxycholesterol or PPARγ siRNA followed by Western blot analysis for ATP-binding cassette transporter A1 (ABCA1), PPARγ and LXRα. Cholesterol efflux to apoA-I was determined, and Oil Red O staining was performed to monitor variations in lipid levels in treated GBECs. Our data showed that 22(R)-hydroxycholesterol can modestly up-regulate LXRα while simultaneously increasing ABCA1 by 56%. The combination of 22(R)-hydroxycholesterol and pioglitazone resulted in a 3.64-fold increase in ABCA1 expression and a high rate of cholesterol efflux. Oil Red O staining showed an obvious reduction in the lipid droplets associated with cholesterosis in GBECs. In conclusion, the present findings indicate that the anti-lipid deposition action of 22(R)-hydroxycholesterol combined with pioglitazone involves the activation of the PPARγ–LXRα–ABCA1 pathway, increased ABCA1 expression and the efflux of cholesterol from GBECs. Thus, 22(R)-hydroxycholesterol synergistically combined with pioglitazone to produce a remarkable effect on lipid deposition in cholesterosis GBECs.  相似文献   
9.
Pleiotrophin (Ptn) plays an important role in bone growth through regulating osteoblasts’ functions. The underlying signaling mechanisms are not fully understood. In the current study, we found that Ptn induced heparin-binding epidermal growth factor (HB-EGF) release to trans-activate EGF-receptor (EGFR) in both primary osteoblasts and osteoblast-like MC3T3-E1 cells. Meanwhile, Ptn activated Akt and Erk signalings in cultured osteoblasts. The EGFR inhibitor AG1478 as well as the monoclonal antibody against HB-EGF (anti-HB-EGF) significantly inhibited Ptn-induced EGFR activation and Akt and Erk phosphorylations in MC3T3-E1 cells and primary osteoblasts. Further, EGFR siRNA depletion or dominant negative mutation suppressed also Akt and Erk activation in MC3T3-E1 cells. Finally, we observed that Ptn increased alkaline phosphatase (ALP) activity and inhibited dexamethasone (Dex)-induced cell death in both MC3T3-E1 cells and primary osteoblasts, such effects were alleviated by AG1478 or anti-HB-EGF. Together, these results suggest that Ptn-induced Akt/Erk activation and some of its pleiotropic functions are mediated by EGFR trans-activation in cultured osteoblasts.  相似文献   
10.
Polyomavirus BK (BKV) infection is an important cause of renal allograft failure. Viral microRNAs are known to play a crucial role in viral replication. This study investigated the expression of BKV-encoded microRNAs (miR-B1) in patients with polyomavirus-associated nephropathy (PVAN) and their role in viral replication. Following BKV infection in renal proximal tubular cells, the 3p and 5p miR-B1 levels were significantly increased. Cells transfected with the vector containing the miR-B1 precursor (the miR-B1 vector) showed a significant increase in expression of 3p and 5p miR-B1 and decrease in luciferase activity of a reporter containing the 3p and 5p miR-B1 binding sites, compared to cells transfected with the miR-B1-mutated vector. Transfection of the miR-B1 expression vector or the 3p and 5p miR-B1 oligonucleotides inhibited expression of TAg. TAg-enhanced promoter activity and BKV replication were inhibited by miR-B1. In contrast, inhibition of miR-B1 expression by addition of miR-B1 antagomirs or silencing of Dicer upregulated the expression of TAg and VP1 proteins in BKV-infected cells. Importantly, patients with PVAN had significantly higher levels of 3p and 5p miR-B1 compared to renal transplant patients without PVAN. In conclusion, we demonstrated that (1) miR-B1 expression was upregulated during BKV infection and (2) miR-B1 suppressed TAg-mediated autoregulation of BKV replication. Use of miR-B1 can be evaluated as a potential treatment strategy against BKV infection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号