首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  国内免费   1篇
  完全免费   18篇
  2019年   2篇
  2018年   3篇
  2017年   2篇
  2016年   2篇
  2015年   1篇
  2014年   4篇
  2013年   4篇
  2012年   5篇
  2011年   3篇
  2010年   1篇
  2009年   4篇
  2008年   1篇
  2007年   3篇
  2006年   2篇
  2005年   2篇
  2004年   2篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1997年   1篇
排序方式: 共有45条查询结果,搜索用时 46 毫秒
1.
Molecular-beacon-based array for sensitive DNA analysis   总被引:13,自引:0,他引:13  
Yao G  Tan W 《Analytical biochemistry》2004,331(2):216-223
Molecular beacon (MB) DNA probes provide a new way for sensitive label-free DNA/protein detection in homogeneous solution and biosensor development. However, a relatively low fluorescence enhancement after the hybridization of the surface-immobilized MB hinders its effective biotechnological applications. We have designed new molecular beacon probes to enable a larger separation between the surface and the surface-bound MBs. Using these MB probes, we have developed a DNA array on avidin-coated cover slips and have improved analytical sensitivity. A home-built wide-field optical setup was used for imaging the array. Our results show that linker length, pH, and ionic strength have obvious effects on the performance of the surface-bound MBs. The fluorescence enhancement of the new MBs after hybridization has been increased from 2 to 5.5. The MB-based DNA array could be used for DNA detection with high sensitivity, enabling simultaneous multiple-target bioanalysis in a variety of biotechnological applications.  相似文献
2.
Trichosanthin (TCS) is the major effective component from Chinese herb Trichosanthes kirilowii. TCS has been approved to be effective in clinical treatment of HIV infection and leukemia, but its allergenicity has limited its clinical usage. To identify amino acid residues in TCS with an important role in IgE induction, TCS-specific IgE mAb (TE1) was used to serve as a probe and TE1 epitope was determined by a random phage-peptide library. Based on phage peptide sequences, TE1 epitope was predicted at amino acid residues 169-174 (QQIGKR) of TCS protein. Based on modeling data, two amino acids (Lys173 and Arg174) on TCS were considered to have a crucial role in binding to TE1. After lysine 173 and arginine 174 were mutated to glycine, the mutant TCS protein specifically lost the binding activity to TE1 mAb and exhibited reduced IgE induction in the immunized mice. The data showed that the IgE epitope of TCS was determined and shown to play a critical role in induction of IgE, and the modification of IgE-epitope may be a useful strategy to reduce the allergenicity of an allergen.  相似文献
3.
The CAF1 protein is a component of the CCR4–NOT deadenylase complex. While yeast CAF1 displays deadenylase activity, this activity is not required for its deadenylation function in vivo, and CCR4 is the primary deadenylase in the complex. In order to identify CAF1-specific functional regions required for deadenylation in vivo, we targeted for mutagenesis six regions of CAF1 that are specifically conserved among CAF1 orthologs. Defects in residues 213–215, found to be a site required for binding CCR4, reduced the rate of deadenylation to a lesser extent and resulted in in vivo phenotypes that were less severe than did defects in other regions of CAF1 that displayed greater contact to CCR4. These results imply that CAF1, while affecting deadenylation through its contact to CCR4, has functions in deadenylation separate from its contact to CCR4. Synthetic lethalities of caf1Δ, but not that of ccr4Δ, with defects in DHH1 or PAB1, both of which are involved in translation, further supports a role of CAF1 separate from that of CCR4. Importantly, other mutations in PAB1 that reduced translation, while not affecting deadenylation by themselves or when combined with ccr4Δ, severely blocked deadenylation when coupled with a caf1 deletion. These results indicate that both CAF1 and factors involved in translation are required for deadenylation.  相似文献
4.
采用40对引物的微卫星DNA PCR遗传质量符合要求的BALB/C-nu0nu-,DBA/2,SCID,T739,TA2,615等6种近交系小鼠进行遗传监测,结果26对引物有稳定的扩增结果,5对引物表现为单态性,21对引物表现出多态性,其中D2Nds3,D3Mitl5,D3Mitl7,D3Mit18,D16Mit7等6对引物表现出显著的多态性,反映了各品系小鼠独特的遗传背景,可应用于区别小鼠品系,监测系间的遗传污染,为有关小鼠品系积累了遗传背景资料,有助于将实验动物的遗传监测从表墼这度到DNA水平。  相似文献
5.
MPTP损伤的小鼠PD模型的制作与评价   总被引:2,自引:0,他引:2       下载免费PDF全文
帕金森病(Parkinson!sdisease,PD)动物模型研究的目的是揭示多巴胺能神经元特异性损伤的机制,进而探索针对这种损伤的神经保护方法或治疗方法.由神经毒素MPTP损伤的小鼠PD模型,广泛应用于散发性PD的研究中.根据注射总剂量、两次注射间隔时间、注射方式的不同,制成了适合于不同研究目的的各种小鼠PD模型.关于MPTP导致的PD模型动物神经损伤的评价方式也是多层面、多指标并存的.对MPTP动物模型的起源和MPTP导致多巴胺能神经元损伤途径进行了较为系统的概述,并对MPTP小鼠PD模型的制作方法与评价指标进行较为详细的归纳.  相似文献
6.
次黄嘌呤-鸟嘌呤磷酸核糖基转移酶( hypoxanthine guanine phosphoribosyltransferase,HGPRT )的功能缺失与痛风、肾结石和雷纳综合症(Lesch-Nyhan Syndrome)等疾病相关.制作HGPRT基因表达降低的模式动物,将有利于人们对这种疾病的发病机理和治疗做进一步的研究.构建了针对HGPRT基因表达的shRNA干扰载体,并将质粒转染兔成纤维细胞,获得携带该干扰片段的转基因细胞系,经PCR鉴定转基因成纤维细胞克隆阳性率为83.3%.RT-PCR及Western blot检测结果表明转基因干扰成纤维细胞系HGPRT mRNA和蛋白质表达量明显降低.最后,以转基因成纤维细胞进行核移植,囊胚率为27.8%,与正常来源的成纤维细胞囊胚率相比较差异不显著.说明,通过RNAi可稳定干扰兔成纤维细胞HGPRT基因的表达,为进一步通过核移植技术建立HGPRT RNAi转基因兔模型创造条件.  相似文献
7.
In the southeast of the Qinghai-Tibetan Plateau of China, sea buckthorn ( Hippophae rhamnoides L.), which is a thorny nitrogen-fixing deciduously perennial shrub, has been widely used in forest restoration as the pioneer species. In our study, two contrasting populations from the low and high altitudinal regions were employed to investigate the effects of drought, ultraviolet-B (UV-B) and their combination on sea buckthorn. The experimental design included two watering regimes (well watered and drought stressed) and two levels of UV-B (with and without UV-B supplementation). Drought significantly decreased total biomass, total leaf area and specific leaf area (SLA), and increased root/shoot ratio, fine root/coarse root ratio and abscisic acid content (ABA) in both populations. However, the high altitudinal population was more responsive to drought than the low altitudinal population. On the other hand, elevated UV-B induced increase in anthocyanins in both populations, whereas the accumulation of UV-absorbing compounds occurred only in the low altitudinal population. The drought-induced enhancement of ABA in the high altitudinal population was significantly suppressed in the combination of drought and elevated UV-B. Moreover, significant drought × UV-B interaction was detected on total biomass in both populations, total leaf area and fine root/coarse root in the low altitudinal population, and SLA in the high altitudinal population. These results demonstrated that there were different adaptive responses between two contrasting populations, the high altitudinal population exhibited higher tolerance to drought and UV-B than the low altitudinal population.  相似文献
8.
利用EL350基因工程菌进行同源重组,成功进行基因敲除已有报道,但利用该系统进行兔次黄嘌呤-鸟嘌呤磷酸核糖转移酶(Hypoxanthine guanine phosphoribosyl transferase,HPRT)基因突变和基因打靶方面的研究还没有报道。本实验首先在已经筛选到含有兔全长HPRT基因BAC克隆(LBNL1-304M19)的基础上,利用Red重组系统,通过Gap-Repair方式从此克隆上将一段47Kb无启动子的HPRT基因组片段(不含有第1个外显子)克隆到pBACLinkSp质粒上,产生pBACLinkSp-rHPRT质粒。然后基于pBACLinkSp-rHPRT质粒,设计不同的同源臂,从而删除了HPRT基因的不同编码区,成功构建了三个不同的HPRT基因打靶载体。同时对利用同源重组技术敲除不同大小的DNA片段的效率进行了研究。基于本实验所构建的三个不同的兔HPRT基因打靶载体,为探索兔成纤维细胞和胚胎干细胞基因打靶的适宜条件,及进一步获得兔HPRT基因敲除动物疾病模型奠定了基础。  相似文献
9.
Select strains of plant growth-promoting rhizobacteria (PGPR) were evaluated in greenhouse experiments with cucumber for induction of resistance against cucumber beetle (Diabrotica undecimpunctata howardi Barber) feeding and the beetle-transmitted cucurbit wilt disease. When beetles were given a choice between PGPR-treated and nontreated cucumber, their feeding on stems and cotyledons and the severity of wilt symptoms were significantly lower on PGPR-treated plants. HPLC analysis demonstrated that cotyledons from PGPR-treated plants contained significantly lower concentrations of the cucumber beetle feeding stimulant cucurbitacin than nontreated plants. These results suggest that a mechanism for PGPR-induced resistance against cucumber beetle feeding may involve a change in the metabolic pathway for cucurbitacin synthesis.  相似文献
10.
The complete genetic absence of colony stimulating factor 1 (CSF1) in CSF1-deficient Csf1(op)/Csf1(op) mice leads to reproductive defects in males and females. Although the cell-surface or membrane-bound isoform of CSF1 (mCSF1) is biologically active in bone, little is known about its role in reproduction. Transgenic mice expressing mCSF1 under the control of the 2.4-kb rat collagen type I alpha promoter were developed [Tg(Col1a1-mCSF1)1Gqy] and bred onto a Csf1(op)/Csf1(op) background [Csf1(op)/Csf1(op); Tg(Col1a1-mCSF1)1Gqy] to examine the effects of the mCSF1 isoform in bone in vivo. Surprisingly, when interbred, these mice were fertile. The Csf1(op)/Csf1(op); Tg(Col1a1-mCSF1)1Gqy transgenic male mice have normal libido, sperm number and percent of motile sperm. In Csf1(op)/Csf1(op); Tg(Col1a1-mCSF1)1Gqy females, puberty and estrus cycles are at expected age and duration. Further, females are able to carry pregnancies to term and nurse their offspring. Crosses of Csf1(op)/Csf1(op); Tg(Col1a1-mCSF1)1Gqy males or females with their control littermates showed no significant differences in either number or viability of offspring. However, crossing Csf1(op)/Csf1(op); Tg(Col1a1-mCSF1)1Gqy males with Csf1(op); Tg(Col1a1-mCSF1)1Gqy females resulted in a decline in both the number and viability of offspring, suggesting that a subtle reproductive defect might persist in the transgenic animals that was only manifest when the animals were interbred. Although the gravid murine uterus expresses extremely high levels of CSF1 that are thought to be important for reproduction, uterine tissue levels of CSF1 remained low and unchanged during pregnancy in Csf1(op)/Csf1(op); Tg(Col1a1-mCSF1)1Gqy mice. Low levels of CSF1 protein were detected in serum and in lung and uterine tissue in Csf1(op)/Csf1(op); Tg(Col1a1-mCSF1)1Gqy mouse, which likely result from the known proteolytic shedding of mCSF1 from the cell surface. These data are consistent with the conclusion that mCSF1, when shed from the cell surface, can support reproduction and that high uterine tissue levels of CSF1 may not be required for mouse reproduction.  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号