首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   0篇
  国内免费   44篇
  2018年   1篇
  2016年   2篇
  2014年   22篇
  2013年   6篇
  2012年   1篇
  2010年   8篇
  2009年   4篇
排序方式: 共有44条查询结果,搜索用时 15 毫秒
1.
为了研究前列腺癌相关基因(prostate and colon gene 1, PC-1对受体酪氨酸激酶家族分子EphA3表达的影响,用RT-PCR、实时PCR和Western印迹检测表达不同水平PC-1的前列腺癌细胞系LNCaP和C4-2中EphA3的表达情况. 发现PC-1可诱导EphA3基因表达上调. 采用荧光素酶实验检测PC-1对于EphA3启动子转录活性的影响,结果显示,PC-1对转录起始位点上游916 bp的启动子活性没有影响,而可增强转录起始位点上游2011 bp启动子的活性.对EphA3启动子-916 bp~-2 011 bp区域进行生物信息学分析,结果显示,此区域包含HSF、NF-1、Nkx-2、SP1和GATA-1等多种转录因子结合位点.实验结果表明,PC-1可通过影响EphA3启动子诱导EphA3基因高表达,其调控区域位于转录起始位点上游-2 011 bp至-916 bp之间,提示PC-1可能通过影响一些结合于此区域的转录因子来影响EphA3启动子的转录活性.  相似文献   
2.
尿外泌体是病毒大小的胞外囊泡,是非侵入性获得肾及泌尿生殖道细胞生理病理信息的重要靶标。聚乙二醇沉淀 剂可经济高效地分离富集血清等外泌体,但未见用于尿外泌体富集的详细报道。本研究采用聚乙二醇沉淀剂分离鉴定尿外泌体,并对其RNA组分进行检测,以期建立一个经济、高效、简便的尿外泌体分离富集方法。采集10例健康志愿者晨尿20 mL,聚乙二醇沉淀剂分离尿外泌体。透射电镜观察到直径30~100 nm双层膜包绕的囊性小泡,中央有直径5~15 nm高电子密度区。Western印迹检测到外泌体标记蛋白CD63、CD9、TSG101、ADAM10和内标蛋白β-肌动蛋白的表达。纳米粒径仪测定粒子直径介于30~130 nm,并可见25.37 nm和95.07 nm二个粒子峰。qRT-PCR扩增得到β-肌动蛋白和RNU6 RNA产物带。上述结果表明,聚乙二醇沉淀剂可分离富集尿外泌体,该法简单、高效,不需要超速离心机等昂贵设备,且采用该法富集到的外泌体可用于后续蛋白质与核酸分析。该方法可望加速液体活检应用,尤其是肾及泌尿生殖道病变的无创检测。  相似文献   
3.
本研究采用四维杂交试剂,测定PCR产物的特征熔点温度(temperature of melting point,Tmp),对实时荧光定量PCR所获得阳性信号(特异性的或非特异性的)的结果进行分析和确认,以使检测结论更客观.将荧光探针模式的实时荧光PCR检测后的标本再进行熔解曲线温度扫描,然后在4℃冰箱冷却5min,向反应管加入1μL四维杂交液,再按照温度扫描程序做熔解曲线实验.结果显示,加四维杂交试剂之后的熔解曲线中信号峰值是收敛的,且信噪比增大.相同扩增产物的Tmp的误差是在±1℃之内.实验结果证明,四维杂交试剂对荧光探针模式实时荧光PCR结果可进行更精细的分析和确认.  相似文献   
4.
蛋白O-连接岩藻糖基转移酶1 (Pofut1)基因缺失可导致Notch分子无法与配体结合并启动信号传递. 为研究Pofut1基因对哺乳动物胚胎干细胞(ESC向神经分化的影响,利用Pofut1基因敲除的胚胎干细胞与野生型胚胎干细胞,经体外培养诱导拟胚体(EB分化为神经细胞,计数分化为神经细胞的比例,采用细胞免疫组化染色和real-time PCR等方法,分析神经细胞特异性标志分子的表达. 结果显示,Pofut1基因缺失后,对EBC生长没有明显影响,分化过程中形成的拟胚体数量明显增多,分化的神经样细胞以及神经标志物分子的表达也明显多于对照组;Notch信号缺失对小鼠胚胎干细胞生长无明显影响,但可以促进ES细胞向神经细胞分化.  相似文献   
5.
组蛋白乙酰化是表观遗传修饰的重要方式,主要受到组蛋白乙酰转移酶(histone acetyltransferases, HATs)和组蛋白去乙酰化酶(histone deacetylase, HDACs催化. MYST是人类HATs的4大家族之一,包括MOF(males absent on the first),TIP60 (tat interacting protein 60 kD),结合ORC1的组蛋白乙酰转移酶(histone acetyltransferase binding to ORC1, HBO1),单核细胞白血病锌指蛋白(monocytic leukemia zinc finger protein, MOZ)和MOZ相关蛋白(MOZ related factor, MORF等,均具有典型的MYST结构域.MYST介导的乙酰化是重要的翻译后修饰,其催化底物包括组蛋白和非组蛋白,如组蛋白H3, H4, H2A, H2A突变体,以及许多参与DNA代谢、细胞增殖和发育调控的蛋白因子. MYST蛋白家族参与许多细胞的生理过程,本文主要综述其在调节基因转录、DNA损伤修复和肿瘤发生发展等方面的生物学功能.  相似文献   
6.
盐胁迫下棉花基因组基于毛细管电泳的MSAP分析   总被引:1,自引:0,他引:1  
以棉花杂交种中棉所29为材料,用甲基化敏感扩增多态性(methylation sensitive amplification polymorphism,MSAP) 分析法结合毛细管电泳检测技术进行甲基化鉴定,以初步探讨棉花耐盐的分子机理.应用24个引物组合,中棉所29在0.4%盐水胁迫及清水对照下,平均每引物组合检测甲基化位点数分别为69.2和56.7,差异达显著水平.盐胁迫下的DNA甲基化水平与清水对照下相比,52.6%位点表现出甲基化水平提高,即发生了超甲基化;19.7%位点甲基化水平降低,即表现为次甲基化;二者差异达极显著水平.研究结果表明,中棉所29盐胁迫后发生了广泛的DNA甲基化变化,包括超甲基化和次甲基化,以及其它甲基化类型的转变|发生超甲基化位点极显著地多于发生次甲基化位点.盐胁迫下的中棉所29与对照相比,DNA总体甲基化水平显著提高,暗示中棉所29有提高基因组甲基化水平以应对盐胁迫的潜在机制,棉花基因组整体甲基化水平的提高可能与棉花对盐胁迫的耐受性起重要作用.本研究中,甲基化序列的初步克隆及比对分析表明,盐胁迫前后多个ATP合成相关基因甲基化程度维持在同一水平,其表达不受甲基化影响,这也可能是中棉所29耐盐性较强,在一定时间盐处理后能维持正常生长的原因之一.  相似文献   
7.
生长因子颗粒素蛋白前体(progranulin, PGRN广泛存在于动物和植物组织中.研究证明,哺乳动物的PGRN是一个多功能分子,在组织/器官发育、细胞分化、肿瘤发生发展、炎症应答以及神经退行性疾病中均具有重要的作用.PGRN发挥生物学功能需要和多种结合蛋白相互结合,例如sortilin、Toll样受体9(TLR9、肿瘤坏死因子受体(TNFR及分泌性淋巴细胞蛋白酶抑制因子(SLPI等. 本文将对PGRN的结合受体和生物学功能进行综述.  相似文献   
8.
CRISPR/Cas9技术是近年发展起来的快速基因编辑技术。通过该技术已对多种生物的基因组进行了编辑。由此产生的基因编辑动物的建系与鉴定是随之而来较为繁琐的工作。单导向RNA(single-guide RNA, sgRNA)靶序列的设计和确定不仅影响后续靶向基因组的效率,还可作为优化鉴定、筛选方法的参考。本研究在选取sgRNA靶序列时,不仅依据软件的评分,还分析了sgRNA靶序列是否含有酶切位点,以便对后续纯合子/杂合子进行鉴定。结果显示,以特异引物扩增的野生型小鼠Chrm3基因片段可被限制性内切酶BanⅡ切为两个片段;而纯合子小鼠“丢失”该酶切位点,其PCR产物不能被切开;杂合子小鼠PCR产物被不完全切开,凝胶电泳结果可见三条带。本研究结果提示该策略可有效简化基因编辑动物建系鉴定工作,提高鉴定效率及改善阳性动物辨识效果。  相似文献   
9.
血管紧张素1-7(angiotensin 1-7, Ang1-7在神经系统中发挥重要作用。已有研究发现,Ang1-7在脑缺血动物模型中发挥保护作用,但至今未见有关Ang1-7对氧糖剥夺/复氧(oxygen-glucose deprivation/ reoxygenation, OGD/R损伤神经元的保护作用及其机制的研究报道。本研究以厌氧培养及不含葡萄糖的EBSS培养基培养、建立新生大白鼠原代培养的海马神经元OGD/R模型模拟脑缺血环境,实验分为3组:正常对照组、实验对照组和Ang1-7处理组。倒置显微镜观察神经元形态显示,Ang1-7处理组的神经元形态明显改善|CCK8试剂盒检测发现,Ang1-7处理组的细胞活性提高|流式细胞术研究发现,Ang1-7处理组的神经元凋亡和坏死率降低、神经元内Ca2+及NO水平降低|Western印迹结果发现,Ang1-7处理组Bax表达降低,Bcl-2表达增加。以上结果说明,Ang1-7可降低OGD/R神经元中NO和Ca2+水平,降低Bax蛋白、增加Bcl-2蛋白的表达,减少OGD/R神经元凋亡和坏死率,对OGD/R神经元发挥了保护作用。本研究为进一步在神经元水平上研究Ang-1-7的保护机制奠定基础,对中风等脑缺血疾病的防治具有重要意义。  相似文献   
10.
Rab蛋白构成小G蛋白超家族中最大的1个家族,广泛存在于动物、植物和微生物中.Rab调控细胞内的囊泡形成、转运、锚定及囊泡与质膜的融合等过程,在细胞内吞和分泌途径中发挥分子开关的作用.不同生物中Rab的结构和作用机制非常保守,但Rab的分类和生理学功能存在差异.植物Rab不仅行使类似于动物或微生物同源Rab的细胞学功能,而且在植物生长发育、激素信号调节、生物或非生物胁迫应答等方面表现出功能特异性.本文结合近年的研究进展,对植物Rab的分类、结构、调节机制和功能进行了综述,并对当前植物Rab功能研究的难点和方向进行了
讨论.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号