首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   5篇
  国内免费   34篇
  2023年   4篇
  2022年   6篇
  2021年   4篇
  2020年   2篇
  2018年   2篇
  2017年   2篇
  2016年   3篇
  2015年   3篇
  2014年   1篇
  2013年   5篇
  2012年   2篇
  2011年   1篇
  2009年   4篇
  2008年   2篇
  2007年   2篇
  2006年   1篇
排序方式: 共有44条查询结果,搜索用时 0 毫秒
1.
土壤病毒生态学研究方法   总被引:5,自引:1,他引:4  
韩丽丽  于丹婷  贺纪正 《生态学报》2017,37(6):1749-1756
病毒是地球上最丰富的生物实体,每克土壤中可包含数以亿计的病毒,它不仅影响土壤中其它微生物的群落组成、土壤元素的生物地球化学循环,还会影响土壤微生物的物种进化,甚至影响植物、动物和人体健康。目前人们对土壤中病毒的种类及丰度、分布特征以及功能引起的生态环境效应还知之甚少。在概述病毒生态学研究方法的基础上,对土壤病毒的提取、纯化、定量及分子生态学方法等基本流程进行了比较分析,以期建立一套快速简便、高效稳定的适用于土壤病毒研究的方法,并用于研究土壤病毒的多样性及分布特征,探讨病毒在环境中的生存和传播机制,为土壤病毒的防控及开发利用提供支撑。  相似文献   
2.
生物耐铜的分子机理及铜污染环境的生物联合修复   总被引:2,自引:0,他引:2  
李杰  贺纪正  马延和  朱永官  张蕾 《生态学报》2007,27(6):2615-2626
铜是动植物和人类必需的微量元素,缺乏或过多都将产生不良影响。随着社会经济的发展,人类活动对环境的干扰日益加剧,工业和农业生产活动常可导致土壤铜污染,铜已成为土壤重金属污染的主要元素之一。总结了铜在植物体内的自发内稳态调节机制,在细菌和真菌体内的吸收、分布、解毒和调节因子,同时以蚯蚓为例简要阐述了土壤动物对铜的解毒机理;从分子生物学角度对重金属铜在生物体内的代谢机理及生物对环境中过量铜的联合修复研究进展进行了综述,以期为铜污染环境的植物、微生物和动物联合修复的分子机理研究提供借鉴。  相似文献   
3.
古菌作为区别于细菌和真核生物的第3种生命形式广泛分布于各种生境,与碳、氮等元素的生物地球化学循环密切相关,在整个生态系统中具有重要作用.古菌细胞膜脂作为古菌重要的生物标志物,在其群落组成和对环境变化响应的研究中具有重要指示作用.本文介绍了古菌细胞膜脂的结构特征及不同古菌类群间细胞膜脂结构差异,用以表征古菌群落的组成特征.环境中细胞膜脂丰度可反映古菌生物量,并可与基于DNA的分子生物学手段在结果准确性、分析效率和经济成本方面互补和互证.在重点介绍应用古菌细胞膜脂分析古菌群落组成和丰度的难点和重要性的基础上,结合影响古菌群落变化的环境因子如温度和pH,进一步阐述古菌与所处生境的关系,分析古菌群落演化过程及其在地球化学和地质历史事件研究方面的应用前景.  相似文献   
4.
定量稳定性同位素探针技术(qSIP)是将生态系统中微生物分类性状与代谢功能联系起来的有效工具,能够定量测定特定环境中单个微生物类群暴露于同位素示踪剂后微生物代谢活动或生长速率。qSIP技术采用定量PCR与高通量测序技术并结合稳定同位素探针技术(SIP),通过向环境样品添加标记底物进行培养,提取微生物生物标记物,利用超高速等密度梯度离心将被同位素标记的重链核酸与未被标记的轻链核酸进行分离,并对所有组分微生物类群进行绝对定量和测序分析,基于GC含量和未标记处理DNA密度曲线量化参与吸收转化的DNA同位素丰度。本文重点阐述qSIP的技术原理、数据分析流程及其在微生物生态学研究中的应用进展,并对该技术存在的问题进行了分析和展望。  相似文献   
5.
稳定性同位素探测技术在微生物生态学研究中的应用   总被引:10,自引:0,他引:10  
稳定性同位素标记技术同分子生物学技术相结合而发展起来的稳定性同位素探测技术(stableisotope probing,SIP),在对各种环境中微生物群落组成进行遗传分类学鉴定的同时,可确定其在环境过程中的功能,提供复杂群落中微生物相互作用及其代谢功能的大量信息,具有广阔的应用前景.其基本原理是:将原位或微宇宙(microcosm)的环境样品暴露于稳定性同位素富集的基质中,这些样品中存在的某些微生物能够以基质中的稳定(性同位素为碳源或氮源进行物质代谢并满足其自身生长需要,基质中的稳定性同位素被吸收同化进入微生物体内,参与各类物质如核酸(DNA和RNA)及磷脂脂肪酸(PLFA)等的生物合成,通过提取、分离、纯化、分析这些微生物体内稳定性同位素标记的生物标志物,从而将微生物的组成与其功能联系起来.在介绍稳定性同位素培养基质的选择及标记方法、合适的生物标志物的选择及提取分离方法的基础上,举例阐述了此项技术在甲基营养菌、有机污染物降解菌、根际微生物生态、互营微生物、宏基因组学等方面的应用.  相似文献   
6.
郑勇  贺纪正 《应用生态学报》2020,31(7):2464-2472
干旱和氮沉降深刻影响着人类世森林生态系统的生命活动与物质循环,进而影响全球碳平衡、并反馈作用于气候变化。土壤微生物驱动元素的生物地球化学循环和关键土壤生态过程,在气候变化生物学研究方面具有核心地位和全球重要性。本文综述了干旱和氮沉降对森林土壤细菌和菌根真菌的影响。提出未来应加强全球变化多因子交互作用对土壤微生物多样性、活性与生态功能的研究;建立野外长期定位站,强化亚热带森林生态系统与全球变化研究;注重土壤生物之间互作及网络研究;利用微生物大数据建立相关的机理模型等。从认识微生物多样性和群落组成对全球变化的响应与适应,逐步发展为调控利用微生物群落服务于森林的优化管理、生态资源的合理保护与可持续利用,为充分发挥微生物减缓全球气候变化的作用提供理论基础。  相似文献   
7.
土壤生态系统微生物多样性-稳定性关系的思考   总被引:12,自引:0,他引:12  
自20世纪50年代以来,生物多样性与生态系统稳定性的关系一直是生态学中重点讨论的理论问题之一.在当今人类活动对自然生态系统产生重大影响的情况下,全面理解生态系统多样性与稳定性的关系,有助于我们更好地应对环境变化和生物多样性丧失等生态问题.在陆地生态系统中,关注重点多集中在地上植物生态系统;而对地下生态系统,尤其是对微生物多样性与系统稳定性关系的研究尚重视不够.事实上,土壤微生物作为生命元素循环的驱动者,主导和参与地下生态系统中一系列重要生态过程,对土壤能否正常有序地执行各项生态功能至关重要.对土壤微生物多样性的研究,能使我们明确土壤中微生物对各种环境条件(包括自然和人为因素)变化的响应机制,更好地维持土壤生态系统的稳定性及其生态服务功能.本文在介绍土壤微生物多样性概念、研究方法、地下生态系统稳定性的基础上,重点讨论了土壤微生物多样性对土壤生态系统稳定性的影响,对多样性-稳定性关系在土壤微生物生态学中的应用进行了较为深入和全面的思考.作者提出,土壤微生物系统是一个动态变化的自组织系统,通过遗传来维持其组成和结构的相对稳定性,通过变异而适应外界干扰,共同构成土壤微生物系统的抵抗力(resistance)和恢复力(resilience),维护土壤生态系统的稳定性.今后土壤微生物多样性-稳定性关系的研究,需要注重地上与地下生态系统的结合与统一,借鉴宏观生态学理论来构建微生物生态学的理论框架,建立微生物多样性-稳定性关系的机理模型,从定性描述向定量表征方向发展.  相似文献   
8.
以长期施加氮肥及添加氧化钙调节的酸性土壤为研究对象,运用定量PCR和DGGE技术,探讨了土壤氨氧化微生物及硝化作用对不同施肥处理及氧化钙调节的响应。长期施化学氮肥导致酸性土壤p H(KCl)值(3.35—3.47)和硝化潜势(0.02—0.14μg NO-2-N g-1土壤h-1)进一步降低,而添加Ca O后土壤酸化得以缓解(p H值4.10—4.46),土壤硝化潜势(0.22—0.34μg NO-2-N g-1土h-1)显著增加。同时,添加Ca O处理对氨氧化古菌(AOA)的群落结构无明显影响,但明显提高了各施肥处理土壤中氨氧化细菌(AOB)的群落多样性,加Ca O处理的土壤中,AOA的数量降低而AOB的数量增加。这些结果表明虽然酸性土壤中AOA在数量和活性上占主导优势,AOB在功能上冗余,但当添加Ca O后,AOA和AOB对环境变化迅速作出响应,并根据其不同的生态位需求重新分配优势地位,二者交替作用共同驱动酸性土壤硝化作用。  相似文献   
9.
反硝化功能基因丰度是决定温室气体氧化亚氮(N2O)排放潜力的重要生物因素。反硝化功能基因主要包括产生N2O的关键基因nirKnirS,以及将N2O还原成氮气的基因nosZ InosZ II。本研究利用实时荧光定量PCR,研究了32年缺施氮(N)、磷(P)或钾(K)肥,以及施用石灰、石膏处理下江西鹰潭红壤反硝化功能基因的丰度,分析了其关键影响因素。结果表明: 与平衡施肥的NPK处理相比,缺施P肥显著降低了nirKnirS、nosZ InosZ II基因丰度;缺施N肥显著降低了nirKnosZ InosZ II丰度,对nirS丰度无显著影响;缺施K肥则对反硝化功能基因丰度无显著影响。逐步回归和随机森林分析表明,土壤pH值是影响旱地红壤nosZ InosZ II基因丰度的关键环境因子。施用石灰或石灰+石膏提高了土壤pH值,进而显著提高了nosZ II基因丰度和nosZ II/nosZ I比值,增幅分别为151%~233%和127%~155%。旱地红壤施用石灰或石灰+石膏更有利于nosZ II型N2O还原菌生长,可能提高nosZ II在N2O还原中的相对重要性。缺施P肥对红壤反硝化功能基因丰度的负面影响最大,而施用石灰或石灰+石膏可以提高nosZ II丰度和nosZ II/nosZ I比值,有利于降低红壤N2O排放潜力。  相似文献   
10.
一个新的古菌类群———奇古菌门(Thaumarchaeota)   总被引:7,自引:0,他引:7  
基于16S rRNA基因的系统发育关系,古菌域(Archaea)被分为两个主要类群:广古菌门(Euryarchaeota)和泉古菌门(Crenarchaeota)。近20年来,微生物分子生态学技术的快速发展和应用显示,在中温环境中广泛存在着大量的未培养古菌,而且它们可能在自然界重要元素(N、C)的生物地球化学循环中发挥着重要作用。最初,这些未培养古菌因在16S rRNA基因系统发育上与泉古菌关系较密切而被称作中温泉古菌(non-thermophilic Crenarchaeota)。而近年来,对更多新发现的中温古菌核糖体RNA基因序列和其它分子标记物进行的分析均不支持中温泉古菌由嗜热泉古菌进化而来的假设,而揭示其可能代表古菌域中一个独立的系统发育分支。基因组学、生理生态特征等分析也显示中温泉古菌与泉古菌具有明显不同的特征。因而专家建议将这些古菌(中温泉古菌)划分为一个新的门,成为古菌域的第三个主要类群—Thaumarchaeota(意译为奇古菌门)。这一新古菌门提出后得到其他研究证据的支持和认可。本文对目前已知的奇古菌门的分类地位演化、基因组学、多样性和生理代谢特征等作一简要综述。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号