首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   4篇
  2022年   5篇
  2020年   1篇
  2018年   2篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
生物多样性的稳定维持关乎人类生存发展与地球健康。生物多样性核心监测指标(Essential Biodiversity Variables, EBVs)旨在结合地面调查与遥感技术, 为大尺度、长时间序列的生物多样性监测提供新的解决方案。然而, 目前学界仍然缺乏一套国家尺度标准化EBVs遥感监测产品数据集, 以进行生物多样性评估。本研究旨在对中国生物多样性核心监测指标遥感产品进行体系构建与思考, 首先综述了目前EBVs的遥感研究概况, 并根据EBVs研究文献的数量进行调研分析; 同时, 本文在已有遥感生物多样性产品优先标准的基础上, 添加了“可重复性”的新标准, 并据此构建了中国EBVs遥感产品体系与监测数据集的指标清单, 最终对中国EBVs遥感研究存在的问题进行思考与讨论。本研究可为中国的生物多样性遥感监测提供科学依据, 有望为中国生物多样性政策的制定提供支撑。  相似文献   
2.
太阳辐射是森林生态系统功能与服务得以维持并发展的基础, 对森林中的辐射传输过程进行建模对于理解森林生态系统过程具有重要意义。近年来, 三维辐射传输模型的迅速发展使得冠层辐射能量分布格局与动态的准确模拟成为可能。为更好地理解三维辐射传输模型以使其更有效地服务于森林生态系统研究, 该文从模型的原理、应用及发展趋势3个角度展开论述。首先简要介绍了辐射度方法、光线追踪法等森林三维辐射传输模型常用的原理及目前代表性的模型, 然后总结了三维辐射传输模型在森林生态系统研究中的应用, 最后对模型未来如何通过提高易用性、增加多模型耦合等方式更好地应用于森林生态系统研究进行了展望。随着森林生态系统大数据的积累与过程模型的不断完善, 三维辐射传输模型将在未来森林生态理论研究与实践中发挥更加重要的作用。  相似文献   
3.
随着气候变化和人类活动的加剧, 生态系统正处于剧烈变化中, 生态学家需要从更大的时空尺度去理解生态系统过程和变化规律, 应对全球变化带来的威胁和挑战。传统地面调查方法主要获取的是样方尺度、离散的数据, 难以满足大尺度生态系统研究对数据时空连续性的要求。相比于传统地面调查方法, 遥感技术具有实时获取、重复监测以及多时空尺度的特点, 弥补了传统地面调查方法空间观测尺度有限的缺点。遥感通过分析电磁波信息从而识别地物属性和特征, 反演生态系统组成、能量流动和物质循环过程中的关键要素, 已逐渐成为生态学研究中必不可少的数据来源。近年来, 随着激光雷达、日光诱导叶绿素荧光等新型遥感技术以及无人机、背包等近地面遥感平台的发展, 个人化、定制化的近地面遥感观测逐渐成熟, 新一代遥感技术正在推动遥感信息“二维向三维”的转变, 为传统样地观测与卫星遥感之间搭建了尺度推绎桥梁, 这也给生态系统生态学带来了新的机遇, 推动生态系统生态学向多尺度、多过程、多学科、多途径发展。因此, 该文从生态系统生态学角度出发, 重点关注陆地生态系统中生物组分, 并分别从生态系统类型、结构、功能和生物多样性等方面, 结合作者在实际研究工作中的主要成果和该领域国际前沿动态, 阐述遥感技术在生态系统生态学中的研究现状并指出我国生态系统遥感监测领域发展方向及亟待解决的问题。  相似文献   
4.
随着人口的持续增长,人类经济活动对自然资源的利用强度不断升级以及全球气候变暖,全球物种正以前所未有的速度丧失,生物多样性成为了全球关注的热点问题。传统生物多样性研究以地面调查方法为主,重点关注物种或样地水平,但无法满足景观尺度、区域尺度以及全球尺度的生物多样性保护和评估需求。遥感作为获取生物多样性信息的另一种手段,近年来在生物多样性领域发展迅速,其覆盖广、序列性以及可重复性等特点使之在大尺度生物多样性监测和制图以及评估方面具有极大优势。本文主要通过文献收集整理,从观测手段、研究尺度、观测对象和生物多样性关注点等方面综述了遥感在生物多样性研究中的应用现状,重点分析不同遥感平台的技术优势和局限性,并探讨了未来遥感在生物多样性研究的应用趋势。遥感平台按观测高度可分为近地面遥感、航空遥感和卫星遥感,能够获取样地–景观–区域–洲际–全球尺度的生物多样性信息。星载平台在生物多样性研究中应用最多,航空遥感的应用研究偏少主要受飞行成本限制。近地面遥感作为一个新兴平台,能够直接观测到物种的个体,获取生物多样性关注的物种和种群信息,是未来遥感在生物多样性应用中的发展方向。虽然遥感技术在生物多样性研究中的应用存在一定的局限性,未来随着传感器发展和多源数据融合技术的完善,遥感能更好地从多个尺度、全方位地服务于生物多样性保护和评估。  相似文献   
5.
生态位模型通过拟合物种分布与环境变量之间的关系提供物种空间分布预测,在生物多样性研究中有广泛应用。激光雷达(LiDAR)是一种新兴的主动遥感技术,已被大量应用于森林三维结构信息的提取,但其在物种分布模拟的应用研究比较缺乏。本研究以美国加州内华达山脉南部地区的食鱼貂(Martes pennanti)的分布模拟为例,探索Li DAR技术在物种分布模拟中的有效性。生态位模型采用5种传统多类分类器,包括神经网络、广义线性模型、广义可加模型、最大熵模型和多元自适应回归样条模型,并使用正样本–背景学习(presence and background learning,PBL)算法进行模型校正;同时对这5种模型使用加权平均进行模型集成,作为第6个模型。此外,一类最大熵模型也被用于模拟该物种的空间分布。模型的连续输出和二值输出分别使用AUC(area under the receiver operating characteristic curve)以及基于正样本–背景数据的评价指标F_(pb)进行评价。结果表明,仅考虑气候因子(温度和降水)时,7个模型的AUC和F_(pb)平均值分别为0.779和1.077;当考虑Li DAR变量(冠层容重、枝下高、叶面积指数、高程、坡度等)后,AUC和F_(pb)分别为0.800和1.106。该研究表明,Li DAR数据能够提高食鱼貂空间分布的预测精度,在物种分布模拟方面存在一定的应用价值。  相似文献   
6.
生物多样性强烈的时空尺度依赖性和多层次性决定了生物多样性现状与变量的分析需要在不同生态系统进行多空间尺度、全面和连续的监测。因此, 构建生物多样性研究监测网络是生物多样性保护和研究的基础工作。近年来, 对地观测组织-生物多样性观测网络(GEO BON)、亚太生物多样性监测网络(APBON)等全球、区域以及国家尺度的生物多样性监测网络蓬勃发展。中国陆续在国家尺度上建立了针对生态系统和物种的长期监测网络, 其中, 中国生物多样性监测与研究网络(China Biodiversity Observation and Research Network, Sino BON)于2013年启动建设, 在我国主要生态系统和环境梯度设置30个监测主点和60个监测辅点, 目前已建成10个专项网对动物、植物和微生物进行监测, 并建立了以数据标准与汇交、近地面遥感为核心的综合监测中心。Sino BON打造了从地下、地面到森林林冠的多尺度、多类群(功能群)以及多营养级交互为重点的监测与研究平台, 为理解生物多样性变化趋势及其驱动因素、研究生物多样性维持机制, 以及国家履行《生物多样性公约》、保护生物多样性和生物资源提供详实可靠的生物多样性变化数据。为进一步支撑国家生物多样性治理能力、深化全球多样性保护合作, 我国生物多样性监测亟需在监测技术、监测区域、数据标准、综合信息平台等方向谋求更大的发展。  相似文献   
7.
准确获取森林结构参数对森林生态系统研究及其保护有着重要意义。卫星遥感数据作为获取大尺度森林结构参数的重要数据源, 已被制作成各种植被监测产品并被应用于森林质量状况变化评估、森林生物量估算以及森林干扰和生物多样性监测等研究。然而, 这些卫星遥感植被监测产品针对中国复杂多样的森林区域缺乏有效验证, 在不同林况和地形条件下的不确定性也不明确。激光雷达具备高精度三维信息采集的优势, 在国内外已被广泛用于森林生态系统监测和卫星遥感产品验证。为此, 该研究利用在中国114个样地收集的153 km2的无人机激光雷达数据, 构建了我国森林结构参数验证数据集, 并以此为基础对3套全球遥感监测产品(全球叶面积指数(GLASS LAI)、全球冠层覆盖度(GLCF TCC)、全球冠层高度(GFCH))进行了像元尺度的验证, 并分析了其在不同坡度、覆盖度和林型条件下的不确定性。研究结果表明: 与无人机激光雷达获取的叶面积指数、覆盖度以及冠层高度相比, GLASS LAI、GLCF TCC、GFCH在中国森林区域均存在一定的不确定性, 且受林况和地形因素影响的程度不一致。对GLASS LAI和GLCF TCC影响的最大因素分别为林型和覆盖度; 而GFCH则更易受地形坡度和覆盖度的影响。  相似文献   
8.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号