首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   5篇
  国内免费   10篇
  2022年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2013年   1篇
  2012年   1篇
  2009年   1篇
  2006年   1篇
  2004年   4篇
  2002年   1篇
  1996年   2篇
  1994年   1篇
排序方式: 共有16条查询结果,搜索用时 7 毫秒
1.
青藏高原北部多年冻土区草地植物多样性   总被引:49,自引:4,他引:45  
研究了青藏高原北部多年冻土区草地群落植物多样性的特征。研究表明 :草地群落间丰富度指数差异不显著 ,均匀度指数和多样性指数差异显著 (P<0 .0 5 )。均匀度指数表现为高山嵩草 (Kobresia pygmaea)草甸 <紫花针茅 (Stipa purpurea)草原 <矮嵩草 (K.humilis)草甸 <青藏苔草 (Carex moorcroftii)草甸 ,多样性指数表现为高山嵩草草甸 <矮嵩草草甸 <紫花针茅草原<青藏苔草草甸。修路时破坏的矮嵩草草甸在次生恢复过程中 ,离公路 10 0 m处群落的丰富度指数 ,均匀度指数和多样性指数大于原生群落 ,而原生群落的多样性又大于 30 m和 5 0 m处群落的多样性。地上草地群落植物多样性伴随地下冻土退化过程表现为 ,以 1m2样方统计时 ,各个演替群落间的丰富度指数差异不显著 ,而以 10 0 m2样条统计时 ,高寒草甸和草原化草甸的丰富度指数显著大于沼泽草甸和稀疏草原 (P<0 .0 5 ) ,但均匀度和多样性指数在两种统计面积时均表现为先增加后下降的变化趋势。  相似文献   
2.
外源供氮水平对大豆生物固氮效率的影响   总被引:2,自引:0,他引:2  
采用稳定性同位素15N自然丰度(15N natural abundance)技术,以小麦为参照植物,研究了盆栽条件下,在外源供氮0、0.8、2.0、4.0 mmol·L-1水平下大豆的生物固氮百分率以及生物固氮数量对植物氮的贡献.结果显示:(1)0~2.0 mmol·L-1外源供氮可显著提高大豆的生物量和固氮百分率,且于2.0 mmol·L-1处理下地上生物量最高,达104 g·m-2,比CK增加了48%;(2)在0.8 mmol·L-1的供氮水平下大豆生物固氮量最高,为1.318 g·m-2,占大豆植株总吸氮量的70.4%,而在4.0 mmol·L-1供氮水平下生物固氮量仅占植株总吸氮量的44%;随供氮水平的升高,大豆生物固氮量占总吸氮量的比重下降,说明在高水平外源氮下,大豆生物固氮能力受到抑制;(3)大豆生物固氮百分率、固氮数量及吸氮数量与地上生物量间均呈显著正相关关系.结果表明,应用稳定性15N同位素技术可以定量大豆的生物固氮效率,根瘤菌接种配合低浓度外源氮有利于大豆生物固氮潜能的释放,对提高大豆产量、减少化肥投入有积极的指导意义.  相似文献   
3.
对黄土高原塬区冬小麦‘陇育216’于分蘖期、拔节期及孕穗期进行刈割处理,以不刈割为对照,测定冬小麦再生生长发育的积温需求及籽粒产量及其品质,探究刈割利用时间对冬小麦再生生长积温需求及产量构成的影响。结果表明:(1)分蘖中期(6个分蘖)前刈割利用,小麦再生各阶段的有效积温需求较对照无显著差异,在收获小麦青干草0.9~1.5t/hm2的同时,能保证籽粒、秸秆产量及其品质较对照均无显著下降;分蘖期后期(9个分蘖)及其后刈割利用,拔节至开花及成熟期的有效积温需求显著减少,尽管较分蘖期可多收获60%的青干草,但籽粒、秸秆产量较对照均显著降低。(2)通径分析发现,刈割主要通过降低再生植株高度及减少单位面积穗数而导致冬小麦籽粒减产。研究表明,为维持冬小麦再生生长节律、籽粒产量及品质形成的稳定,冬小麦刈割利用的时期应不迟于分蘖中期(6个分蘖)。  相似文献   
4.
在晴天条件下 ,研究了 4年生甘肃红豆草 (Onobrychis viciaefolia scop.cv.‘Gansu’)、沙打旺 (Astragalus adsurgens)、东方山羊豆 (Galega orientalis)和多年生香豌豆 (L athyruslatifolius)人工种群花期 (5月 31日 )和再生期 (7月 10日 )的净光合速率、蒸腾速率、气孔导度、水分利用效率以及土壤贮水量和水分利用特征。结果表明 ,自 5月 31日 (花期 )至 7月 10日 (再生期 ) ,4种牧草对土壤水分消耗由大到小依次为 :沙打旺 119.2 mm、多年生香豌豆 91.6 mm、山羊豆 81.9m m和红豆草 73.8m m。红豆草在花期和再生期的净光合速率分别为 12 .4 1和 9.0 6μ mol CO2 / (m2 · s) ,沙打旺为 10 .10和 7.0 1μ m ol CO2 / (m2 · s) ;红豆草在花期和再生期的日均蒸腾速率 8.13和 9.0 5 m m ol H2 O/ (m2· s) ,沙打旺刈割前和刈割后蒸腾速率分别为 7.4 0和 6 .5 4mmol H2 O/ (m2· s) ,属于高光合、高蒸腾型。而山羊豆和多年生香豌豆则属于低蒸腾、低光合类型 ,花期和再生期 ,山羊豆的日均光合速率分别为 4 .74和 4 .88μm ol CO2 / (m2· s) ,多年生香豌豆为 4 .4 1和 4 .6 4 μ mol CO2 / (m2· s) ,相应的蒸腾速率分别达到 3.75和 5 .4 2 m mol H2 O/ (m2 · s) ,4 .74和 4 .34m mol H2 O/ (m2 · s)。  相似文献   
5.
2 0 0 1~ 2 0 0 3年在甘肃庆阳黄土高原连续 3 a研究了紫花苜蓿 -冬小麦轮作系统中土壤 0~ 3 0 0 cm剖面水分动态特征 ,作物产量及其含 N量。处理包括 4龄苜蓿草地 (L C)、4龄苜蓿草地后茬持续休闲 (L F)、4龄苜蓿草地休闲 4个月后种植冬小麦(L Fl W) ,和 4龄苜蓿草地休闲 1个月后种植冬小麦 (L Fs W)。结果表明 ,种植 4a苜蓿后春季翻挖实施休闲至冬小麦播种(L Fl W)的 4个月期间 ,降雨的入渗深度为 150 cm,而苜蓿秋季翻挖休闲至小麦播种 (L Fs W)的一个月间 ,降雨在土壤内的入渗深度为 90 cm,不同休闲长度对头茬冬小麦土壤 0~ 90 cm水分贮存量无显著影响 ,亦不影响头茬冬小麦的出苗和出苗数。苜蓿后茬完全休闲 (L F)一个生长季后 ,60~ 90 cm土壤水分含量达田间最大重力持水量 (Drainage U pper L imit DU L )的 93 % ,0~ 3 0 0cm剖面土壤贮水量达 670 mm ,是剖面田间最大重力持水量 (DUL )的 78% ;L Fl W和 L Fs W处理下头茬小麦籽粒产量之间差异显著 (P<0 .0 5) ,收获指数和千粒重等指数无显著差异 ;L Fl W和 L Fs W处理中获得的二茬小麦产量无显著差异 ;连续种植苜蓿与种植小麦有接近的生物量 ,但苜蓿地植物总 N的输出量较小麦田高 2~ 3倍。由于黄土高原降雨变率大 ,因此预测土壤含水量动态有  相似文献   
6.
在多年定位试验的基础上,采用LI-8150-16多通道土壤碳通量测量系统对传统耕作和免耕处理下玉米田的土壤呼吸进行了连续观测,以探讨不同耕作措施处理下土壤呼吸对降雨的响应。结果表明:降雨发生瞬间,土壤呼吸受应激反应影响迅速降低,传统耕作和免耕处理下分别较降雨前降低62.9%—92.9%和35.8%—56.9%;降雨后,传统耕作和免耕处理土壤呼吸的降幅范围分别为31.5%—89.2%和15.7%—59.9%;土壤体积含水量接近于18%时,传统耕作下土壤呼吸比免耕下高51.8%,当土壤体积含水量高于30%时,传统耕作下土壤呼吸比免耕处理下低43.0%,表明传统耕作土壤呼吸更易受土壤水分的影响,波动幅度大;传统耕作处理下土壤呼吸随土壤温度的升高而增大,免耕处理下土壤呼吸随土壤温度的升高变化不明显;土壤体积含水量较小(20%)时,不同耕作处理下土壤呼吸均随土壤含水量增加而增加,含水量较高(30%)时则均随土壤含水量的升高而减小,两种情况下均为免耕处理的变化速率更大;双因子线性模型可较好地描述玉米田土壤呼吸对温度和水分变化的响应。  相似文献   
7.
陇东旱作果园生草对土壤细菌群落组成的影响   总被引:2,自引:0,他引:2  
以陇东旱塬13年生秦冠苹果园为对象,采用高通量测序技术分析鸭茅(Dactylis glomerata)、白三叶(Trifolium repens)和紫花苜蓿(Medicago sativa)生草模式下0~10 cm土壤细菌群落及特异菌属组成特征,明晰生草覆盖后土壤细菌群落多样性变化规律,为陇东旱作果园建立最优生草管理方式提供依据。结果表明:3种生草模式下,土壤细菌群落中相对丰度前3位的菌门为变形菌门(Proteobacteria)(48%~52%)、拟杆菌门(Bacteroidetes)(14%~19%)和酸杆菌门(Acidobacteria)(10%~17%);与对照相比,鸭茅、白三叶和紫花苜蓿处理土壤细菌β-变形菌纲(Betaproteobacteria)相对丰度分别增加19%~38%,黄杆菌纲(Flavobacteriia)相对丰度分别增加31%~65%,土壤溶杆菌属(Lysobacter)相对丰度分别增加37%~93%,苯基杆菌属(Phenylobacterium)相对丰度分别增加45%~52%;不同生草模式下土壤均发现特异菌属,梭菌属(Clostridium)出现在鸭茅模式中,该菌属促进土壤氮素积累;侏囊菌属(Nannocystis)存在于白三叶模式中,该菌属分布在有机质丰富环境中;芽孢杆菌属(Bacillus)主要出现在种植白三叶和紫花苜蓿的土壤中,该菌属与植物固氮有较强关联性;果园生草后土壤细菌多样性有增加趋势,可以促进土壤有益特异菌属产生,从而起到调节土壤微环境的作用。  相似文献   
8.
黄土高原区苜蓿与小麦轮作系统根部入侵真菌研究   总被引:3,自引:0,他引:3  
以甘肃庆阳黄土高原地区草田轮作系统中苜蓿(Medzfago sativn)和小麦(Triticum aestivum)为研究材料,分别于2002年两种作物的拔节期(分枝期)、开花期、成熟期和幼苗期(第3茬分枝期)取样,分离、鉴定了根部入侵真菌,测定了分离所得根部入侵真菌对其寄主作物及另一种轮作作物的致病力。结果表明:在试验区内共分离到27种根部入侵真菌,包括自小麦根系分离到26种,苜蓿侧根分离到23种,其中22种为苜蓿和小麦共同的根部入侵真菌。两种作物根部入侵真菌区系中优势种明显不同,苜蓿根部最主要的5种入侵真菌按分离率的高低依次为尖镰孢(Fusarium oxysporum)17.0%、大孢肉座菌(Selinia sp.)15.4%、茎点霉(Phoma medicaginis)9.5%、腐皮镰孢(Fusarium solani)6.7%及柱孢(Cylindrocarpon destructans)6.6%;而小麦根部5种最主要的入侵真菌按分离率的高低依次为黑团孢(Periconia sp.)15.0%、丝葚霉(Papulaspora sp.)12.1%、多主枝孢(Cladosporium herbarum)5.4%、丝核菌(Rhizoctonia sp.)4.0%及尖镰孢3.9%;总的真菌分离率亦是苜蓿高于小麦。苜蓿与小麦的根段带菌率均有随生长季的延长而增高的特征。在试验条件下,参试的苜蓿、小麦根部入侵真菌对苜蓿和小麦均有一定的致病力,但对苜蓿种子和幼苗的致病力强于对小麦种子和幼苗的致病力。在轮作体系中,小麦田轮作苜蓿应注意防治根部入侵真菌的危害。  相似文献   
9.
不同耕作处理下大豆生物固N能力及对系统N素的贡献   总被引:1,自引:0,他引:1  
2002年至2003年在黄土高原研究了4个耕作处理,传统耕作(t)、传统耕作+秸秆覆盖(ts)、免耕(nt)和免耕+秸秆覆盖(nts)下大豆的生物固N百分率(%Ndfa)、固N数量及其对春玉米-冬小麦-夏大豆轮作系统中N素的贡献。结果表明,在t、ts、nt和nts处理下2002年的生物固N百分率为17.6%、34.3%、22.4%和19.3%,2003年则为58.5%、62.4%、54.9%和43.8%,其中2003年的生物固N百分率比2002年分别高出69.9%、45.O%、59.3%和56.1%,固N数量高出56.2%、33.8%、49.5%和43.1%。大豆生物固N百分率、生物固N数量与生物量呈正相关关系,在ts处理下显著相关。土壤NO3-N含量和大豆固N数量呈负相关,大豆植株吸N量占土壤NO3-N的百分比在2002年为:t(88.1)〉ts(84.6)〉nts(78.7)〉nt(63.6),2003年为:t(115.5)〉ts(104.2)〉nts(99.8)〉nt(95.8)。2002年大豆对该轮作系统的N素贡献分别为6.6(t)、11.6(ts)、6.5(nt)和6.1(nts)kg/hm^2,生物固N量占总N输入量的百分比为14.6(t)、21.5(ts)、14.9(nt)和12.9(nts);2003年大豆对系统的N素贡献分别为14.9(t)、17.6(ts)、12.9(nt)和10.7(nts)kg/hm2,生物固N量占总N输入的百分比为63.2%(t)、58.5%(nt)、47.7%(ts)和39.9%(nts)。年际变异造成了大豆生物固N的年际差异,秸杆覆盖+耕作因改善水分状况,而促进了大豆的生物固N作用。  相似文献   
10.
APSIM 模型的发展与应用   总被引:7,自引:0,他引:7  
土壤-作物模拟模型已成为向农业生产管理决策提供科学依据的一个有效工具,APSIM(Agricultural Production System Simulator)模型是澳大利亚科学家开发研制的,用于模拟农业系统穰生物过程,特别是气候风险下系统各组分生态和经济输出的机理模型,APSIM已在温带大 陆性气候,温带海洋性气候,亚热带干旱气候和地中海气候带下的粘土,胀缩土(duplex),变性土(vertisol),粉粒砂壤,粉粒壤土和粉粒粘壤土等土壤上进行了验证和应用。可以用于小麦等20余种作物的模拟,APSIM模型在作物结构和轮作序列调整,作物产量,质量预测和控制及不同种植方式下水土流失调控等方面具有良好的描述能力。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号