首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  国内免费   14篇
  2018年   1篇
  2017年   1篇
  2014年   1篇
  2011年   2篇
  2010年   2篇
  2009年   4篇
  2008年   5篇
排序方式: 共有16条查询结果,搜索用时 15 毫秒
1.
采用连续熏蒸-培养法,测定了福建武夷山自然保护区不同海拔高度具有代表性的中亚热带常绿阔叶林、针叶林、亚高山矮林以及高山草甸土壤中有效碳含量,分析了土壤有效碳(LOC)与微生物量碳(MBC)、土壤总有机碳(TOC)、细根生物量(FRB)和土壤全氮(TN)之间的关系.结果表明:土壤有效碳占总有机碳的3.40%~7.46%;微生物量碳只是土壤有效碳中的一部分,占土壤有效碳26.87%~80.38%;不同林分土壤有效碳含量随海拔增高而显著增大,随土层深度的增加而降低;土壤有效碳与微生物量碳、土壤总有机碳、细根生物量、土壤全氮之间呈极显著的相关关系.高海拔土壤有效碳含量显著高于低海拔土壤.  相似文献   
2.
武夷山不同海拔高度土壤活性有机碳变化   总被引:11,自引:0,他引:11  
采用连续熏蒸 培养法,测定了福建武夷山自然保护区不同海拔高度具有代表性的中亚热带常绿阔叶林、针叶林、亚高山矮林以及高山草甸土壤中有效碳含量,分析了土壤有效碳(LOC)与微生物量碳(MBC)、土壤总有机碳(TOC)、细根生物量(FRB)和土壤全氮(TN)之间的关系.结果表明:土壤有效碳占总有机碳的3.40%~7.46%;微生物量碳只是土壤有效碳中的一部分,占土壤有效碳26.87%~80.38%; 不同林分土壤有效碳含量随海拔增高而显著增大,随土层深度的增加而降低;土壤有效碳与微生物量碳、土壤总有机碳、细根生物量、土壤全氮之间呈极显著的相关关系.高海拔土壤有效碳含量显著高于低海拔土壤.  相似文献   
3.
武夷山不同海拔植被土壤呼吸季节变化及对温度的敏感性   总被引:9,自引:0,他引:9  
以武夷山国家级自然保护区为实验基地,研究了4种不同海拔高度上植物群落土壤呼吸速率的季节变化及其对温度的敏感性,以及与主要环境因子的关系.结果表明:4种不同海拔植物群落的土壤呼吸速率均具有明显且一致的季节变化,其中夏季土壤呼吸速率最大,为3.10~6.57 μmol CO2·m-2·s-1,冬季最小,为0.27~1.15 μmol CO2·m-2·s-1;土壤呼吸速率与土壤温度呈显著指数相关,不同样地土壤呼吸速率与土壤含水率和凋落物输入量的关系各不相同;高海拔地区土壤呼吸的Q10值显著高于低海拔地区.在中亚热带地区,不同海拔土壤呼吸速率的季节波动主要受土壤温度的影响;在未来全球气候变暖的背景下,高海拔地区的土壤可能释放更多的CO2.  相似文献   
4.
武夷山不同海拔典型植被带土壤酶活性特征   总被引:10,自引:0,他引:10  
在武夷山自然保护区不同海拔4个典型植被带(常绿阔叶林、针叶林、亚高山矮林以及高山草甸)采集土壤样品,分析了脲酶、蔗糖酶、酸性磷酸酶和过氧化氢酶4种主要土壤酶活性的变化.结果表明:除磷酸酶外,武夷山不同海拔植被带土壤酶活性没有显著的季节差异,磷酸酶活性秋季显著高于其他季节;不同海拔土壤酶活性差异显著,海拔与季节对土壤酶活性无交互影响;土壤酶活性随海拔升高总体上呈上升趋势,高海拔草甸的土壤酶活性显著高于低海拔林地土壤;土壤酶活性具有明显的垂直分层分布,土层越深酶活性越低;4个植被带土壤脲酶活性为1.28 ~3.87 mg·g-1·24h-1,高山草甸>常绿阔叶林>亚高山矮林>针叶林;蔗糖酶活性为36.18 ~244.08 mg·g-1·24 h-1,高山草甸>针叶林>常绿阔叶林>亚高山矮林;磷酸酶活性和过氧化氢酶活性分别为0.18~0.62 mg·g-1 ·2 h-1和1.78 ~1.98 ml·g-1·20 min-1,高山草甸>针叶林>亚高山矮林>常绿阔叶林;土壤酶活性与土壤总有机碳、全氮显著正相关;与土壤温度、湿度、pH相关性比较复杂.  相似文献   
5.
武夷山植被带土壤微生物量沿海拔梯度的变化   总被引:12,自引:1,他引:11  
土壤微生物量是陆地生态系统碳循环的重要组成部分,在森林生态系统物质循环和能量转化中占有特别重要的地位.以武夷山常绿阔叶林(EBF)、针叶林(CF)、亚高山矮林(DF)和高山草甸(AM)为试验对象,研究了土壤微生物量沿海拔梯度的变化特征.结果表明:在0~10cm土壤层,随着海拔高度的增加,年平均土壤微生物量增大,AM的年平均土壤微生物量为4.07 g·kg-1,分别为DF、CF和EBF的2.06、3.21倍和3.91倍;AM的年平均土壤微生物量显著大于DF、CF和AM(p<0.01),DF的年平均土壤微生物量显著大于EBF、CF(p<0.05),EBF和CF的年平均土壤微生物量无显著性差异(p>0.05),10~25cm土壤层的年平均土壤微生物量的变化规律与上层基本一致;在0~10cm土壤层,不同海拔年平均土壤微生物量分别与土壤有机碳、全氮、全硫含量以及土壤湿度呈显著正相关(p<0.05),在10~25cm土壤层,不同海拔年平均土壤微生物量分别与土壤有机碳、全氮含量呈显著正相关(p<0.05).研究表明,武夷山亚热带森林年平均土壤微生物量随海拔高度升高而增加,土壤有机碳、全氮、全硫和土壤湿度可能是调控土壤微生物量沿海拔梯度变化的主要因子.  相似文献   
6.
武夷山不同海拔高度土壤有机碳矿化速率的比较   总被引:6,自引:0,他引:6  
应用土壤培养法,比较分析了武夷山不同海拔高度土壤在25℃和60%田间饱和含水量条件下培养110 d有机碳矿化速率和矿化率的差异.结果表明:不同海拔高度土壤有机碳矿化速率随海拔高度的升高而加快,高山草甸(0.08 g CO2-C·kg-1·d-1)分别比亚高山矮林、针叶林、常绿阔叶林快14.3%、60.0%和166.7%,差异主要存在于0~10 cm.土壤碳矿化率以针叶林最高(16.6%),分别比亚高山矮林、常绿阔叶林、高山草甸高37.0%、67.6%和79.1%.土壤有机碳矿化速率和矿化率均随土层加深而递减,递减的幅度在不同海拔高度土壤间存在显著差异(P<0.05).研究结果揭示,土壤碳矿化速率和矿化比率随着海拔高度的变化而产生显著的变化.  相似文献   
7.
福建武夷山福建武夷山生物圈保护区位于武夷山脉北部最高地段,总面积570平方公里,以保护森林生态类型为主。1 987年加入联合国教科文组织世界生物圈保护区网络。驾车路线:京沪高速→余姚→上虞→绍兴→萧山→诸暨→义乌→金华→龙游→衢州→常山→上饶→武夷山。地方特产:茶、香榧、笋干、野蜂蜜、红菇。旅游资源:武夷山最高峰黄岗山海拔2158米,是  相似文献   
8.
武夷山不同海拔高度土壤氮矿化对温度变化的响应   总被引:7,自引:1,他引:6  
采集了武夷山4个不同海拔的植物群落(常绿阔叶林、针叶林、亚高山矮林和高山草甸)的土壤样品,在实验室条件下, 将含水量调节为田间持水量60%,置于5 ℃、15 ℃、25 ℃和35 ℃人工气候箱中培养30 d,以测定土壤净氮矿化对温度的敏感性。结果表明:相同海拔植物群落的土壤净氮矿化量和氮矿化速率均随温度的升高显著增加;不同海拔间土壤氮矿化量和氮矿化速率大小均表现为:亚高山矮林>常绿阔叶林>高山草甸>针叶林。土壤氮矿化的Q10在1.03~1.54,并且15 ℃升高到25 ℃时的Q10比5 ℃升高到15 ℃和25 ℃升高到35 ℃时的Q10高,表明土壤氮矿化对温度的敏感性在15 ℃~25 ℃较高。  相似文献   
9.
武夷山低海拔和高海拔森林土壤有机碳的矿化特征   总被引:2,自引:0,他引:2  
研究不同海拔土壤有机碳矿化对深入认识不同海拔森林土壤有机碳动态变化具有重要意义.本文以武夷山低海拔和高海拔森林土壤为研究对象,通过室内模拟其在各自年平均气温(17、9℃)条件下的矿化培养试验,探讨土壤有机碳矿化特征的差异.结果表明:培养126 d后,尽管高海拔森林土壤的有机碳含量显著高于低海拔森林土壤,但低海拔和高海拔森林土壤在各自环境温度背景下的有机碳累积矿化量并无显著差异.一级动力学方程均能较好地模拟高低海拔森林土壤有机碳矿化特征,高海拔和低海拔森林土壤有机碳潜在矿化量(CP)和矿化速率常数均无显著差异,但低海拔土壤C_P/SOC值和矿化率显著高于高海拔土壤,表明在环境温度背景下,低海拔土壤固碳能力低于高海拔土壤.随着培养时间增加,高海拔土壤微生物生物量碳和微生物熵显著高于低海拔土壤,表明高海拔土壤微生物的碳同化量高于低海拔土壤微生物,有利于有机碳的积累.高海拔森林土壤中的β-葡萄糖甘酶和纤维素水解酶高于低海拔森林土壤,说明高海拔土壤微生物可能更多地分解活性碳.未来气候变暖可能暗示着会降低高海拔土壤有机碳固碳能力和微生物碳利用效率,从而导致土壤有机碳储量下降.  相似文献   
10.
以武夷山不同海拔(600、900、1300、1500、1800、2000和2100 m)的乔木、灌木和草本3种生活型植物为研究对象,观测其水分利用效率和叶片氮、磷养分浓度随海拔的变化趋势,旨在探索海拔梯度间水分、养分变化与植物水分利用效率变化的关系.结果表明: 植物水分利用效率随海拔的增加呈显著上升趋势,乔木叶片δ18O随海拔变化不显著.总体上看,叶片氮浓度未观测到规律性的变化,高海拔地区的叶片磷浓度显著高于低海拔地区.水分利用效率与叶片磷浓度呈显著正相关,而与叶片氮浓度相关性不显著.不同海拔植物水分利用效率变化主要由光合速率的变化引起,水分状况对植物水分利用效率的影响不显著.海拔梯度间植物叶片磷浓度的差异对光合速率影响显著,进而影响水分利用效率.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号