首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   2篇
  国内免费   16篇
  2016年   1篇
  2015年   3篇
  2012年   2篇
  2011年   2篇
  2010年   3篇
  2009年   1篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2002年   3篇
排序方式: 共有19条查询结果,搜索用时 15 毫秒
1.
京津唐城市群土地利用变化的区域增温效应模拟   总被引:4,自引:0,他引:4  
土地利用变化与大气相互作用,影响区域气候,而城市及其周边地区受人类活动影响很大,成为土地利用变化最为强烈的区域。利用耦合了城市冠层模型的中尺度大气模式(WRF/UCM),在2008年的初始大气条件和边界条件下,用20世纪70年代后期和2008年两期京津唐地区土地利用资料替换WRF/UCM模式推荐的地表覆盖数据,模拟分析不同土地利用类型及其变化对应的气候差异情况。在此过程中,利用插值方法(ANUSPLIN)得到京津唐及其周边26个气象站点观测气温的插值数据,并以此在时空尺度上对比验证了模式的模拟结果。结果表明:WRF/UCM较好地模拟出了近地表2 m的气温,无论在空间上还是在时间上都表现良好;由城市扩展主导的土地利用变化导致研究区大部分区域的增温幅度大于0.05℃,且最大的增温区域出现在城市扩展区,可达1.31℃。此外本研究初步探讨了土地利用变化的增温贡献率,结果显示研究区土地利用变化导致增温0.08℃,整体贡献率为9.88%,城市扩展区增温0.29℃,表示出了城市扩展导致的增温贡献率达到32.75%。  相似文献   
2.
We use Landsat TM time series data for the years of 1991/1992, 1995/1996 and 1999/2000 to characterize land-cover change in northeast China. With the information on land-cover change and the density of vegetation and soil carbon, we assess the potential effect of land-cover change on vegetation and soil carbon in this region. Our results show a large decrease of 2.76(104km2 in forest area and a rapid increase of 2.32(104km2 in urban area. Land-cover changes in northeast China have resulted in a potential maximum loss of 273.2 Tg C for the period of 1991-2000, with a net loss of 95.7 Tg C in vegetation and 177.5Tg C in soil. . The conversion of forests into other land-cover types could have potentially resulted in a loss of 254.6 Tg C for the study period, accounting for 68.8% of the total potential carbon loss in the northeast China. To quantify the net effect of land-cover change on carbon storage will require accounting for vegetation regrowth and soil processes. Our results also imply that forest protectionand reforestation are of critical importance to carbon sequestration in China.  相似文献   
3.
 在森林植被生物量遥感动态监测方面最基础性的研究是探讨生物量与遥感数据及其派生数据、地形数据和气象数据之间的相关性。为此,以我国云南省西双版纳的热带森林植被为例,分别对幼龄林、中龄林、近熟林和成过熟林的生物量与其对应的LANDSAT TM数据及其派生数据、气象数据和地形数据之间的相关性进行了分析。首先,利用森林资源连续清查的林业固定样地数据,通过各树种组的各器官生物量估算模型计算出各样地森林植被的生物量,并根据样地的坐标来建立样地GIS数据库。然后,利用地形图对遥感图像进行几何校正,并对遥感图像进行主成分变换、缨帽变换以及植被指数的计算来产生其派生数据。其次,将栅格样地数据、遥感数据(如LANDSAT TM数据)及其派生数据(如各种植被指数数据、主成分数据、缨帽变换的亮度、绿度和湿度数据)、栅格地形数据(如DEM和坡向)和栅格气象数据(包括年平均温度、大于0 ℃的积温、年平均降雨量和湿润度)统一到同一坐标系和投影下,并将所有的数据内插为30 m分辨率的格网数据,利用样地数据与遥感数据及其派生数据、地形数据和气象数据进行栅格空间叠加分析,从而得到各样地的样地数据、遥感数据及其派生数据、地形数据和气象数据。再次,根据各样地优势树种所属的龄组将所有的数据层化为幼龄林、中龄林、近熟林和成过熟林等几个不同龄组的样本数据。最后,分别对幼龄林、中龄林、近熟林和成过熟林的样地生物量与其对应的遥感数据和派生数据、气象数据和地形数据进行相关性分析。研究表明,在所有的因子中,幼龄林的生物量与LANDSAT 的TM1和TM6波段的亮度值在0.05的水平上呈显著相关,其相关系数均为-0.33;中龄林的生物量与降雨量在0.05的水平上呈显著相关,其相关系数为0.33;近熟林的生物量与LANDSAT TM的派生数据VI3、LANDSAT的TM4和缨帽变换的亮度值在0.05的水平上呈显著相关,其相关系数分别为0.50、-0.45和-0.45;成过熟林的生物量与主成分变换的第二主成分(PC2)在0.05的水平上呈显著相关,其相关系数为-0.46。在0.05的水平上,近熟林的生物量与LANDSAT TM的派生数据VI3的相关系数最高,达到0.50,其次是成过熟林的生物量与主成分变换的第二主成分的相关系数,为-0.46。  相似文献   
4.
2012年夏季,研究人员对蒙古高原长约1100km的乌兰巴托—锡林浩特草地样带开展考察,获取了46个样地的物种数量、地上生物量等数据;基于全球GHCN(全球历史气象网络)数据集,提取了样带夏季(6—8月)月均温度和降水总量;继而根据自然地理和行政区边界,将草地样带大致分成北部(蒙古国乌兰巴托—蒙古国艾日格)、中部(蒙古国艾日格—中国苏尼特左旗)和南部(中国苏尼特左旗—中国锡林浩特),开展了分析。研究表明:(1)样带夏季平均温度的空间分布形态呈现明显的倒"U"型分布,南北两端温度较低,中部温度较高;夏季降水量在空间上的分布形态则与之相反,呈现南北两端降水量较高,中部降水量较低的正"U"型分布;(2)样带上植物物种数量、地上生物量的空间分布形态均呈现正"U"型分布,即在生态景观类型为典型温性草原的样带南部和北部地区,其生物多样性、地上生物量明显好于呈现为温性荒漠草原、温性荒漠景观的样带中部地区。(3)相关分析体现了大尺度(高原样带尺度)上植被特征与水热环境因子间的关系:植物物种数量、地上生物量与夏季月均温度均呈现负相关,而与夏季降水总量则呈现正相关关系。(4)偏相关分析反映了局地小尺度上植被特征与水热环境因子间的关系:温度和降水要素对于植物物种数量、地上生物量均呈现正相关。  相似文献   
5.
根据第6次森林清查小班数据,运用生物量转换因子法和平均生物量法估算了2003年江西省泰和县森林植被的生物量和碳储量,采用空间替代时间的方法,利用Logistic方程拟合了泰和主要森林类型年龄与碳密度的曲线关系,并结合小班轮伐信息,估算了全县1985—2003年的植被生物量和碳储量,分析了期间的时空动态特征,并以2003年为基准年,假定到2020、2030年泰和县森林植被面积保持稳定、且不考虑轮伐期,推算了此情景下2020、2030年泰和县植被碳储量.结果表明:2003年,泰和县森林林分总面积15.74×104 hm2,总生物量6.71 Tg,植被碳储量4.14 Tg C,平均碳密度26.31 t C·hm- 2. 1985、1994、2003、2020、2030年泰和县森林植被碳储量分别为1.06、2.83、4.14、5.65和6.35Tg C,森林植被碳密度的空间分布由东西部向中部递减.人工造林使泰和县林分面积大幅增加,全县森林植被的固碳能力明显增强.  相似文献   
6.
 三江源区不仅是地处青藏高原的全球气候变化的敏感区, 也是我国甚至亚洲最重要河流的上游关键源区。作为提供物质基础的植被净初级生产力(Net primary production, NPP), 是评价生态系统状况的重要指标。该文应用已在碳通量观测塔验证, 扩展到区域水平的遥感-过程耦合模型GLOPEM-CEVSA, 以空间插值的气象数据和1 km分辨率的AVHRR遥感反演的FPAR数据为模型主要输入, 模拟并分析了1988~2004年该区NPP时空格局及其控制机制。结果表明, 该区植被平均NPP为143.17 gC·m–2·a–1, 呈自东南向西北逐渐降低的空间格局, 其中, 以森林NPP最高(267.90 gC·m–2·a–1), 其次为农田(222.94 gC·m–2·a–1)、草地(160.90 gC·m–2·a–1)和湿地(161.36 gC·m–2·a–1), 荒漠最低(36.13 gC·m–2·a–1)。其年际变化趋势在空间上呈现出明显的差异, 西部地区NPP表现为增加趋势, 每10 a增加7.8~28.8 gC·m–2; 而中、东部表现为降低趋势, 每10 a降低13.1~42.8 gC·m–2。根据显著性检验, NPP呈增加趋势(趋势斜率b>0), 显著性水平高于99%和95%的区域占研究区总面积的13.43%和20.34%, 主要分布在西部地区; NPP呈降低趋势(趋势斜率b<0), 显著性水平高于99%和95%的区域占研究区面积的0.75%和3.77%, 主要分布在中、东部地区, 尤以该区长江和黄河等沿线区分布更为集中, 变化显著性也更高。三江源NPP的年际变化趋势的气候驱动力分析表明, 整个区域水平上该地区植被生产力受气候变化的主导, 西部地区暖湿化趋势, 造成了该地区生产力较为明显的、大范围的增加趋势; 但东、中部地区则主要受人类活动的影响, 特别是长江、黄河等河流沿线, 是人类居住活动密集的地区, 造成这些地区放牧压力较大、草地退化严重, 而该地区暖干化趋势加剧了这一过程。  相似文献   
7.
1985-2030年江西泰和县森林植被碳储量的时空动态   总被引:4,自引:0,他引:4  
根据第6次森林清查小班数据,运用生物量转换因子法和平均生物量法估算了2003年江西省泰和县森林植被的生物量和碳储量,采用空间替代时间的方法,利用Logistic方程拟合了泰和主要森林类型年龄与碳密度的曲线关系,并结合小班轮伐信息,估算了全县1985—2003年的植被生物量和碳储量,分析了期间的时空动态特征,并以2003年为基准年,假定到2020、2030年泰和县森林植被面积保持稳定、且不考虑轮伐期,推算了此情景下2020、2030年泰和县植被碳储量.结果表明:2003年,泰和县森林林分总面积15.74×104 hm2,总生物量6.71 Tg,植被碳储量4.14 Tg C,平均碳密度26.31 t C·hm- 2. 1985、1994、2003、2020、2030年泰和县森林植被碳储量分别为1.06、2.83、4.14、5.65和6.35Tg C,森林植被碳密度的空间分布由东西部向中部递减.人工造林使泰和县林分面积大幅增加,全县森林植被的固碳能力明显增强.  相似文献   
8.
We use Landsat TM time series data for the years of 1991/1992, 1995/1996 and1999/2000 to characterize land-cover change in northeast China. With the information onland-cover change and the density of vegetation and soil carbon, we assess the potential effect of land-cover change on vegetation and soil carbon in this region. Our results show a large decrease of 2.76×10~4km~2 in forest area and a rapid increase of 2.32×10~4km~2 in urban area. Land-cover changes in northeast China have resulted in a potential maximum loss of 273.2 Tg C for the period of 1991-2000, with a net loss of 95.7 Tg C in vegetation and 177.5Tg C in soil. The conversionof forests into other land-cover types could have potentially resulted in a loss of 254.6 Tg C for thestudy period, accounting for 68.8% of the total potential carbon loss in the northeast China. To quantify the net effect of land-cover change on carbon storage will require accounting for vegeta-tion regrowth and soil processes. Our results also imply that forest protection and reforestation are of critical importance to carbon sequestration in China.  相似文献   
9.
黄麟  邵全琴  刘纪远 《生态学报》2015,35(7):2105-2118
人工造林被认为是吸收CO2、减缓气候变暖最有效且最具生态效应的碳增汇方法之一。以江西省作为南方红壤丘陵区人工造林的典型研究区,综合应用树轮生态分析、模型模拟、尺度融合、文献整合分析、遥感反演和GIS空间分析等方法,基于树木年轮信息、森林样方资料和人工林分布数据等,驱动树木材积生长量模型和区域碳通量模型,从样地到区域模拟分析了人工林生产力和碳蓄积的时空变化规律。结果表明,1)1980年至2007年,江西省人工林净初级生产力(NPP)呈现先迅速下降而后缓慢增加的趋势,至今仍未恢复到之前的人工林质量水平,2)碳蓄积年变化在前8a处于平稳状态,而后变化速率增快,从2.19Tg C/a迅速增至8.02 Tg C/a,此后增速减缓;3)人工林NPP与降水量、温度的关系不明显,海拔对NPP值的影响较大而对NPP变化趋势的影响较小,NPP值随着坡度增加而增大;4)造林方式比较,人工造林碳增汇潜力最大,而封山育林在碳蓄积效应方面不具优势。  相似文献   
10.
中国陆地土壤有机碳蓄积量估算误差分析   总被引:55,自引:7,他引:48  
简要介绍了土壤碳蓄积量的计算方法,包括土壤类型法、植被类型法、生命地带法、相关关系法和模型方法,以及土壤有机碳蓄积量的误差分析方法.根据中国策二次土壤普查2473个典型土种剖面数据,采用土壤类型法和两种碳密度方法计算,估算的中国陆地土壤有机碳蓄积量处于615.19×10^14-1211.37×10^14g之间,平均碳密度为10.49—10.53kg·m^-2(土壤厚度为100cm)或11.52—12.04kg·m^-3(土壤平均厚度为88cm),土壤平均碳蓄积量为913.28±298.09×10^14g,估算的不确定性在20%~50%之间.其中,土壤碳计算和采样数量的差异是导致土壤碳蓄积量估算不确定性的重要因素。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号