首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  国内免费   2篇
  2019年   1篇
  2017年   1篇
  2015年   1篇
  2012年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
光照强度是沉水植物生长的主要限制因子。采用Clark 型氧电极研究了悬浮泥沙与斜生栅藻(Scenedesmusobliquus)共同作用对亚洲苦草(Vallisneria natans)光合放氧速率的影响。将亚洲苦草种植于添加不同浓度悬浮泥沙(0.1、0.2、0.5、1.0g·L–1)和斜生栅藻(105、106、107、108 cell·L–1)水体中, 定期测定水体中斜生栅藻叶绿素a、光照强度及亚洲苦草光合放氧速率。结果表明: (1)各实验组斜生栅藻呈“S”型增长, 且到达稳定期时间与悬浮泥沙浓度正相关, 与藻细胞添加浓度负相关; (2)除对照组外, 各实验组水体中光照强度曲线均呈先上升后下降变化趋势, 第3 天各实验组的光照强度均出现了高峰值, 而第3 天以后, 光照强度均开始下降, 其中下降最快的是0.1g·L–1 悬浮泥沙含量实验组, 15 d 后该组平均下降了57.8%, 与空白对照组相比, 差异显著(P<0.05); (3)随着时间推移, 各实验组亚洲苦草光合放氧速率均呈下降的趋势, 其中悬浮泥沙浓度1.0 g·L–1、藻细胞浓度为108 cell·L–1 实验组下降最明显, 15 d 后降到了10.88 μmol·g–1(FW)·h–1; (4)由可重复双因子方差分析可知悬浮泥沙和斜生栅藻对苦草光合放氧速率的影响均极显著(P<0.01), 且添加不同藻细胞密度造成的组间差异明显大于悬浮泥沙含量造成的组间差异, 这说明亚洲苦草光合放氧速率变化对藻细胞密度变化比悬浮泥沙含量变化更为敏感。研究结果进一步揭示了富营养化泥沙水体苦草群落衰退原因, 且为沉水植被恢复工程提供了科学依据。  相似文献   
2.
通过室内人工海水培养和杭州湾栽培实验,探究了穗花狐尾藻的耐盐能力及在低盐度水域中的生长情况。室内培养表明:穗花狐尾藻断枝可在盐度12以内的人工海水中正常生长;低盐度处理可促进不定根的生长;水体盐度达到15后,穗花狐尾藻叶绿素含量和最大光合效率Fv/Fm降低,生长停滞,大部分植株逐渐死亡。野外栽培表明:从2017年6月到2018年5月,穗花狐尾藻可在杭州湾水体盐度6.06~9.03,水温3.85~33.37℃条件存活,8—10月是穗花狐尾藻的快速生长期;穗花狐尾藻在杭州湾低盐度水体中可进行有性繁殖和无性繁殖,以无性繁殖为主。研究结果为穗花狐尾藻在低盐度水体中建立种群提供了依据。  相似文献   
3.
2014 年2 月10 日至3 月28 日对滴水湖外围中涟河道实施以引清调水引导的沉水植物生态修复工程, 从临近的D 港引入清水快速提高水体透明度, 然后移栽苦草(Vallisnerianatans)、伊乐藻(Elodea nuttalii)、龙须眼子菜(Potamogetonpectinatus)等沉水植物, 构建水生植物群落。跟踪监测总氮(TN)、氨态氮(NH4+-N)、硝态氮(NO3-N)、亚硝态氮(NO2-N)、总磷(TP)和磷酸盐(PO43–-P)等水质指标, 分析该生态工程对富营养化河道的修复效果。结果表明: 工程实施后第2 个月, 修复区沉水植物的覆盖率由移栽初期的60%提高到85%, 水体综合营养状态指数比对照区降低了19.31%, 达到中营养水平, 修复效果显著(P<0.05)。6 个月后, 修复河道水体内总氮、氨态氮、硝态氮、亚硝态氮、总磷、磷酸盐的浓度与对照区相比显著降低, 削减率分别为43.86%、61.17 %、51.90 %、72.62 %、43.86 %和55.71%, 水体透明度比对照区提高81.82%, 综合营养状态指数显示修复区水体仍保持在中营养状态。引清渐推生态修复工程对富营养化河道修复效果明显, 为我国南方河网较密集区的河道生态修复提供更多的治理思路。  相似文献   
4.
连续可调式沉水植物网床对河道水质的修复   总被引:1,自引:0,他引:1  
在太湖贡湖水源保护区陆域的一条长约200 m的污染河道内构建了一系列连续可调式沉水植物网床,形成了以菊花草、苦草、伊乐藻、轮叶黑藻和菹草等沉水植物构成的水生植物群落;跟踪监测了总氮(TN)、铵态氮(NH4 +-N)、亚硝态氮(NO2--N)、硝态氮(NO3--N)、总磷(TP)和磷酸盐(PO43--P)等水质指标,分析沉水植物网床引导沉水植被恢复对污染河道的水质修复效果.结果表明:沉水植被网床构建后,水体透明度显著升高,由修复前的0.5m提高到1.7 ~1.8 m;在沉水植被网床构建后的第5天和第20天,TN和TP的削减率分别为35.6%、66.3%和29.4%、63.2%;5个月后,修复河道水体内NH4+-N、NO2--N、NO3--N、TN、PO43--p和TP的浓度比对照组显著降低,削减率分别达到92.4%、76.8%、72.7%、73.9%、90.5%和92.0%.由连续可调式沉水植被网床引导恢复的水生植物群落可用于河道,特别是陆域浅水污染水体的生态修复.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号