首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   2篇
  国内免费   8篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2010年   3篇
  2007年   2篇
排序方式: 共有16条查询结果,搜索用时 15 毫秒
1.
利用LI-6400便携式光合作用测定仪, 测定不同灌溉措施下紫花针茅(Stipa purpurea)的光合特性对CO2浓度和温度的响应, 探讨了土壤水分、温度和CO2浓度升高对藏北高寒草地紫花针茅光合作用的影响。结果表明: 1)紫花针茅各项光合特性参数对CO2浓度、温度和土壤水分的变化响应显著, 并表现出明显的交互作用; 2) CO2浓度升高促进光合速率, 但CO2浓度过高时光合速率反而下降; 温度升高抑制光合速率, 土壤水分增加对高温条件下的光合作用具有补偿作用; 土壤水分增加促进紫花针茅光合速率的升高; 3)随着CO2浓度的升高, 胞间CO2浓度逐渐增大, 蒸腾速率降低, 水分利用效率升高, 气孔导度逐渐减小, 且温度升高加剧气孔导度下降的程度。各光合参数在不同温度水平和土壤水分下表现不同: 气孔导度在20 ℃时达到最大值, 且土壤水分增加利于气孔导度的增大; 温度上升抑制了胞间CO2浓度, 且在土壤水分充足的条件下更显著; 蒸腾速率随着温度的上升而加快, 蒸腾速率与土壤水分的正相关关系明显; 叶片饱和水汽压亏缺与温度成正比, 充足的土壤水分会适当降低饱和水汽压亏缺; 水分利用效率随着温度上升和土壤水分增多而减小。不同土壤水分条件下光合参数对温度的响应结果表明, 土壤水分的增加对较高温度下光合及其生理参数与温度的关系具有一定的补偿作用。  相似文献   
2.
大气CO2浓度和温度升高对水稻干物质积累的影响因不同栽培区域和不同稻作类型而异。目前,我国双季稻轮作系统干物质生产力对温度、CO2浓度升高和二者交互作用的响应特征尚不明确。本研究以早稻‘两优287’和晚稻‘湘丰优9号’为供试材料,在湖北省荆州市利用开顶式气室(OTC)进行连续3年的大田原位模拟试验,设置大田(UC)、对照(CK,OTC控制大气温度和CO2浓度)、增温2 ℃(ET)、CO2浓度增加60 μmol·mol-1(EC)、增温2 ℃+CO2浓度增加60 μmol·mol-1(ETEC)5个处理,研究温度和CO2浓度升高对早稻和晚稻地上部生物量、叶面积和净同化速率的影响。结果表明: CO2浓度和/或温度升高对早稻和晚稻移栽-拔节阶段净同化速率影响不显著,提高了拔节-齐穗阶段净同化速率,但降低了齐穗-成熟阶段净同化速率(除早稻对高CO2浓度表现为正响应外)。CO2浓度和/或温度升高促进了各生育期叶面积的增长,以ETEC处理叶面积指数最高(除成熟期外)。在齐穗期,温度和CO2浓度升高协同促进了地上部干物质积累,ETEC处理早稻和晚稻地上部生物量比CK高10.3%~39.8%和23.6%~34.4%;在早稻成熟期,增温在一定程度上抵消了增加CO2浓度对地上部干物质积累的促进作用,ETEC比EC地上部生物量降低3.2%~14.1%;而晚稻成熟期,增温和增加CO2浓度表现为正向的交互作用,可进一步提高地上部生物量。回归分析表明,温度和CO2浓度升高在双季稻营养生长阶段对植株净同化能力以正向作用为主,在生殖生长阶段增温表现为负向作用。由于生长特性、生育期跨度和温度资源配置的差异,CO2浓度和温度升高可能提高我国双季稻轮作系统干物质生产力。  相似文献   
3.
目前,高寒草甸对全球温室效应的贡献仍具有不确定性,而随着N沉降的增加,该系统温室体气排放也必将发生变化。为揭示高寒草甸对N沉降的响应机制,探讨其对全球变化的反馈作用,利用人工添加氮素的方法,于2014年生长季(6-9月)在那曲地区那曲县设置不同水平N添加梯度(0、7、20kg hm~(-2)a~(-1)和40 kg hm~(-2)a~(-1)),模拟氮沉降增加对藏北高寒草甸温室气体排放的影响。经过1a的研究结果表明:1)施氮显著促进了CO_2排放但对CH_4的吸收和N_2O的排放无显著影响。总体而言,添加氮素明显增加了温室气体排放总量,其中N2O处理下高寒草甸温室气体排放总量最高。2)回归分析结果表明,CO_2与NPP(总生物量)和TOC(土壤有机碳)线性相关(P0.05),而与TN(总氮)、NH_4~+-N和NO_3~--N均无显著相关关系(P0.05),CH_4与TN/NPP/TOC/NH_4~+-N/NO_3~--N均不相关(P0.05),N_2O与NPP/TOC/NO_3~--N均显著线性相关(P0.05),而与TN/NH_4~+-N不相关。综合初步研究结果,未来氮沉降增加条件下,藏北高寒草甸温室气体排放通量将有可能明显增加,从而对气候变化产生重要的反馈作用。  相似文献   
4.
基于1981-2004年遥感监测和气象数据,采用CASA(Carnegie-Ames-Stanford Approach)模型模拟分析藏北地区草地植被净第一性生产力(NPP)及其时空变化特征.结果表明:受水热条件的制约,藏北地区草地植被NPP空间分布规律呈水平地带性分布,由东南向西北逐渐由230g C.m-2.a-1减少到接近0.藏北地区草地植被NPP整体水平较低,年均草地植被总NPP为21.5×1012g C.a-1,多年平均值仅为48.1g C.m-2.a-1,明显低于青藏高原和其它草原区.藏北地区坡度小于1°平地和平滩地,以及南坡的草地植被年平均NPP相对较低.藏北主要高寒草地7-9月NPP占全年NPP的64.0%~70.0%.1981-2004年间,藏北地区草地植被总NPP的年际变化较大,并有进一步下降趋势.  相似文献   
5.
放牧对藏北紫花针茅高寒草原植物群落特征的影响   总被引:6,自引:0,他引:6  
基于放牧试验,研究了不同放牧强度下藏北地区紫花针茅(Stipa purpurea)高寒草原植物群落特征的变化规律。结果表明,随着放牧强度的增强,植物群落盖度、地上生物量均呈现显著降低的趋势;紫花针茅等禾草类植物的重要值逐渐降低,莎草类中青藏苔草(Carex moorcroftii)、牲畜不喜食的杂类草及有毒有害植物均有增加的趋势;如果持续过度放牧,植物群落表现出由紫花针茅等禾草为建群种的草地型向青藏苔草(Carex moorcroftii)、杂类草(Herbarum variarum)草地型过度的趋势;在中度放牧强度下,紫花针茅高寒草原α物种多样性达到最高水平,而继续增强放牧强度,则造成各项指标的迅速降低。  相似文献   
6.
藏北高寒草地NPP变化趋势及其对人类活动的响应   总被引:9,自引:0,他引:9  
基于1981~2004年多年遥感监测数据和气象数据以及其它相关数据,采用CASA(Carnegie-Ames-Stanford Approach)模型估算藏北地区草地植被净第一性生产力(NPP),分析草地植被NPP变化趋势的空间格局及其对人类活动强度的响应。结果表明:近24a以来,藏北绝大部分区域(约占草地总面积的88.61%)草地植被NPP变化趋势不明显;而草地植被NPP变化趋势显著的区域仅占草地总面积的11.39%,其中显著降低约占11.30%,显著增高仅占0.09%。在藏北地区,高海拔区域有较大比例(大于26%)的草地NPP显著降低;坡度在15~30°之间区域的草地NPP变化幅度较大;而坡向对草地NPP变化趋势的影响不大。藏北地区居民点对草地NPP变化趋势的负面影响小于道路影响;从综合影响来看,离道路和居民点越近、人类活动强度及其对草地NPP变化趋势的影响越大,尤其是草地NPP显著增高区域只分布在人类活动强度最大的第一个缓冲区内。  相似文献   
7.
通过田间试验研究了不同缓/控释尿素对水稻产量和稻田周年温室气体排放的影响,评估生产单位质量水稻的温室气体排放量.结果表明: 优化施肥(OPT)处理在减氮(N)21.4%条件下产量与习惯施肥(FFP)处理持平,同时减少了稻田周年CH4和N2O的排放,其中水稻季CH4和N2O分别减排12.6%和12.5%,休闲季N2O减排33.3%.与OPT处理相比,控释尿素(CRU)处理在水稻季CH4减排28.9%,休闲季CH4零排放;硝化抑制剂(DMPP)处理在水稻季CH4和N2O分别减排41.6%和85.7%,休闲季CH4和N2O分别减排76.9%和6.5%.休闲季节N2O排放占周年N2O排放的76.8%~94.9%,是评价整个稻田温室气体排放不容忽视的因素.OPT、CRU和DMPP处理生产1.0 kg稻谷的温室气体排放强度分别为0.50、0.41和0.33 kg·kg-1,综合考虑周年的温室气体排放总量和产量,尿素和硝化抑制剂配合施用可以在保证水稻产量的情况下,减少温室气体的排放.  相似文献   
8.
农业流域有机质流失造成水体富营养化和土地退化,不仅威胁水质和粮食安全,而且会导致温室气体排放等潜在环境问题。本研究用13C、15N和C/N作为指纹标志物,分析了南岳小流域出口沉积有机质的来源及其在林地、稻田和菜地等典型土地利用类型土壤的空间分布特征,并结合贝叶斯稳定同位素混合模型定量估算了各土地利用类型的贡献率。结果表明: δ13C具有显著的空间差异,沉积物有机质(-22.6‰±0.53‰)和林地土壤(-23.13‰±1.71‰)的δ13C显著高于稻田土壤(-25.24‰±1.4‰)。各土地利用类型土壤的δ15N差异不显著,沉积物的均值最大,为(4.37±0.83)‰,林地最小,为(2.38±1.97)‰;林地土壤的C/N均值最大,为16.66±7.18,稻田土壤的C/N均值最小,为11.95±0.92。贝叶斯稳定同位素混合模型结果显示,林地、稻田和菜地对流域出口沉积有机质的贡献率分别为19.6%、15.7%和64.7%;稻田和菜地作为农业用地的总贡献率为80.4%。说明农业用地土壤是南岳小流域沉积有机质的主要来源,可以通过优化农田管理措施有效控制流域养分流失。  相似文献   
9.
增温对青藏高原高寒草原生态系统碳交换的影响   总被引:1,自引:0,他引:1  
碳交换是影响草地生态系统碳汇功能的关键过程,对气候变暖极为敏感。青藏高原分布着大面积的高寒草原,其碳汇功能对气候变暖的响应对区域碳循环过程具有重要的影响。为探究高寒草原生态系统碳交换过程对增温的响应,2012—2014年,在青藏高原班戈县进行了模拟增温对高寒草原生态系统碳交换过程影响的研究。结果表明,增温对高寒草原碳交换各组分的影响存在年际差异,但总体上对碳交换存在负面影响。3年平均结果显示,增温显著降低了高寒草原地上生物量、总生态系统生产力(GEP)、生态系统呼吸(ER)和净生态系统碳交换量(NEE)(P0.05),平均降幅分别为15.1%、36.8%、19.2%和51.5%。增温条件下3年平均土壤呼吸(SR)较对照无显著变化(P0.05),但2013年增温显著降低了SR(P0.05),降幅达18.1%。增温对SR与ER的比值具有一定的促进作用,最高增幅达到40.0%。GEP、ER、SR和NEE与土壤温度和土壤水分无显著相关(P0.05),而GEP、ER和NEE与空气温度呈显著的负相关关系(P0.05)。增温引起的干旱胁迫以及地上生物量降低是导致高寒草原NEE降低的主要原因。研究表明,全球变暖会一定程度降低青藏高原高寒草原的碳汇功能。  相似文献   
10.
增温对青藏高原高寒草甸呼吸作用的影响   总被引:1,自引:0,他引:1  
生态系统呼吸(ER)和土壤呼吸(SR)是草地生态系统碳排放的关键环节,其对气候变化极为敏感。高寒草甸是青藏高原典型的草地生态系统,其呼吸作用对气候变化的响应对区域碳排放具有重要的影响。以高寒草甸生态系统为对象,于2012—2016年采用模拟增温的方法研究呼吸作用对增温的响应。结果表明:增温对高寒草甸ER的影响存在年际差异,2013年和2014年增温对ER无显著影响,其他年份显著增加ER(P0.05),综合5年结果,平均增幅达22.3%。增温显著促进了高寒草甸SR(P0.05),较对照处理5年平均增幅高达67.1%;增温总体上提高了SR在ER中的比例(P0.05),最高增幅达到59.9%。ER和SR与土壤温度有显著的正相关关系(P0.05),与土壤水分没有显著的相关关系(P0.05)。对照样地中,土壤温度分别能解释33.0%和18.5%的ER和SR变化。在增温条件下,土壤温度可以解释20.5%和13.0%的ER和SR变化。在增温条件下,SR的温度敏感性显著增加,而ER的温度敏感性变化较小,导致SR的比重进一步增加。因此,在未来气候变暖条件下,青藏高原高寒草甸生态系统碳排放,尤其是土壤碳排放有可能进一步增加,土壤碳流失风险增加。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号