首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   136篇
  免费   18篇
  国内免费   5篇
  2024年   1篇
  2023年   2篇
  2022年   6篇
  2021年   12篇
  2020年   8篇
  2019年   8篇
  2018年   6篇
  2017年   8篇
  2016年   8篇
  2015年   9篇
  2014年   8篇
  2013年   7篇
  2012年   6篇
  2011年   7篇
  2010年   7篇
  2009年   12篇
  2008年   8篇
  2007年   10篇
  2006年   3篇
  2005年   3篇
  2004年   7篇
  2003年   2篇
  2002年   2篇
  2000年   2篇
  1999年   2篇
  1997年   1篇
  1993年   1篇
  1991年   1篇
  1987年   1篇
  1983年   1篇
排序方式: 共有159条查询结果,搜索用时 15 毫秒
91.
92.
We investigated the linkages between leaf litter quality and decomposability in a savanna plant community dominated by palatable-spinescent tree species. We measured: (1) leaf litter decomposability across five woody species that differ in leaf chemistry; (2) mass decomposition, nitrogen (N); and carbon (C) dynamics in leaf litter of a staple browse species (Acacia nigrescens) as well as (3) variation in litter composition across six sites that experienced very different histories of attack from large herbivores. All decomposition trials included litter bags filled with chopped straw to control for variation in site effects. We found a positive relationship between litter quality and decomposability, but we also found that Acacia and straw litter mass remaining did not significantly vary between heavily and lightly browsed sites. This is despite the fact that both the quality and composition of litter returned to the soil were significantly different across sites. We observed greater N resorption from senescing Acacia leaves at heavily browsed sites, which in turn contributed to increase the C:N ratio of leaf litter and caused greater litter N immobilization over time. This, together with the significantly lower tree- and herb-leaf litter mass beneath heavily browsed trees, should negatively affect decomposition rates. However, estimated dung and urine N deposition from both browsers and grazers was significantly greater at high- than at low-herbivory sites. We hypothesize that N inputs from dung and urine boost litter N mineralization and decomposition (especially following seasonal rainfall events), and thereby offset the effects of poor leaf litter quality at chronically browsed sites. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
93.
Costs associated with reproduction are widely known to play a role in the evolution of reproductive tactics with consequences to population and eco‐evolutionary dynamics. Evaluating these costs as they pertain to species in the wild remains an important goal of evolutionary ecology. Individual heterogeneity, including differences in individual quality (i.e., among‐individual differences in traits associated with survival and reproduction) or state, and variation in environmental and social conditions can modulate the costs of reproduction; however, few studies have considered effects of these factors simultaneously. Taking advantage of a detailed, long‐term dataset for a population of feral horses (Sable Island, Nova Scotia, Canada), we address the question of how intrinsic (quality, age), environmental (winter severity, location), and social conditions (group size, composition, sex ratio, density) influence the costs of reproduction on subsequent reproduction. Individual quality was measured using a multivariate analysis on a combination of four static and dynamic traits expected to depict heterogeneity in individual performance. Female quality and age interacted with reproductive status of the previous year to determine current reproductive effort, while no effect of social or environmental covariates was found. High‐quality females showed higher probabilities of giving birth and weaning their foal regardless of their reproductive status the previous year, while those of lower quality showed lower probabilities of producing foals in successive years. Middle‐aged (prime) females had the highest probability of giving birth when they had not reproduced the year before, but no such relationship with age was found among females that had reproduced the previous year, indicating that prime‐aged females bear higher costs of reproduction. We show that individual quality and age were key factors modulating the costs of reproduction in a capital breeder but that environmental or social conditions were not, highlighting the importance of considering multiple factors when studying costs of reproduction.  相似文献   
94.
Browsing of tree saplings by deer hampers forest regeneration in mixed forests across Europe and North America. It is well known that tree species are differentially affected by deer browsing, but little is known about how different facets of diversity, such as species richness, identity, and composition, affect browsing intensity at different spatial scales. Using forest inventory data from the Hainich National Park, a mixed deciduous forest in central Germany, we applied a hierarchical approach to model the browsing probability of patches (regional scale) as well as the species‐specific proportion of saplings browsed within patches (patch scale). We found that, at the regional scale, the probability that a patch was browsed increased with certain species composition, namely with low abundance of European beech (Fagus sylvatica L.) and high abundance of European ash (Fraxinus excelsior L.), whereas at the patch scale, the proportion of saplings browsed per species was mainly determined by the species’ identity, providing a “preference ranking” of the 11 tree species under study. Interestingly, at the regional scale, species‐rich patches were more likely to be browsed; however, at the patch scale, species‐rich patches showed a lower proportion of saplings per species browsed. Presumably, diverse patches attract deer, but satisfy nutritional needs faster, such that fewer saplings need to be browsed. Some forest stand parameters, such as more open canopies, increased the browsing intensity at either scale. By showing the effects that various facets of diversity, as well as environmental parameters, exerted on browsing intensity at the regional as well as patch scale, our study advances the understanding of mammalian herbivore–plant interactions across scales. Our results also indicate which regeneration patches and species are (least) prone to browsing and show the importance of different facets of diversity for the prediction and management of browsing intensity and regeneration dynamics.  相似文献   
95.
Tolerance is the ability of plants to maintain fitness after experiencing herbivore damage. We investigated scarlet gilia tolerance to browsing in the framework of phenotypic plasticity using both an operational and candidate trait approach. Individuals from full-sib families were split into an artificial clipping treatment, a natural-damage treatment, or left as controls. We tested for genetic variation in tolerance by evaluating family x herbivory treatment interactions on fitness in a mixed model analysis of variance. In addition, we used selection analyses to assess the function of flowering phenology and compensatory regrowth (via branch production) as candidate tolerance traits. We found a strong detrimental fitness effect of browsing and considerable variation among sire half-sib families in levels of tolerance (25% to 63% of the fitness of controls). There was no evidence of overcompensation at either the population or family level and no additive genetic variation in operationally defined tolerance. Phenotypic selection analyses provide evidence that early flowering and compensatory regrowth function as tolerance characters. We found strong linear and correlational selection for early flowering and increased branch production for damaged plants and linear selection for apical dominance (reduced branchiness) and early flowering in control plants. Moreover, reduced phenological delay and increased plasticity in branch production were correlated with tolerance. We detected significant additive genetic variation in flowering phenology in both treatments and a positive genetic correlation between the phenology of control and damaged plants. We found significant additive genetic variation in branch production in undamaged and naturally damaged plants, but not in clipped plants. Damaged plants exhibited marginally significant additive genetic variance in fitness, although its heritability was very low (approximately 3.6%). We failed to find additive genetic variation in the fitness of control plants. Our results suggest that tolerance traits are under herbivore-imposed natural selection in this population, but that responses to selection are limited by available genetic variation and selective constraints.  相似文献   
96.
Herbivory by domestic and wild ungulates is a major driver of global vegetation dynamics. However, grazing is not considered in dynamic global vegetation models, or more generally in studies of the effects of environmental change on ecosystems at regional to global scale. An obstacle to this is a lack of empirical tests of several hypotheses linking plant traits with grazing. We, therefore, set out to test whether some widely recognized trait responses to grazing are consistent at the global level. We conducted a meta‐analysis of plant trait responses to grazing, based on 197 studies from all major regions of the world, and using six major conceptual models of trait response to grazing as a framework. Data were available for seven plant traits: life history, canopy height, habit, architecture, growth form (forb, graminoid, herbaceous legume, woody), palatability, and geographic origin. Covariates were precipitation and evolutionary history of herbivory. Overall, grazing favoured annual over perennial plants, short plants over tall plants, prostrate over erect plants, and stoloniferous and rosette architecture over tussock architecture. There was no consistent effect of grazing on growth form. Some response patterns were modified by particular combinations of precipitation and history of herbivory. Climatic and historical contexts are therefore essential for understanding plant trait responses to grazing. Our study identifies some key traits to be incorporated into plant functional classifications for the explicit consideration of grazing into global vegetation models used in global change research. Importantly, our results suggest that plant functional type classifications and response rules need to be specific to regions with different climate and herbivory history.  相似文献   
97.
For many purposes it is often desirable to estimate animal population densities over large areas. Where total counts are not possible and sightings are relatively rare, a range of methods exists to estimate densities from indirect sign. Such methods are frequently unreliable and usually require independent calibration or confirmation. We present an analytical method for estimating population density from track counts. The method, widely known in the Russian Federation but not in the English language scientific literature, requires counts of tracks of known age, together with estimates of animal daily travel distances. We use simulations to verify the theoretical basis of the approach and to indicate potential precision that may be achieved. We illustrate application of the approach using a large data set on ungulate track counts in the Russian Far East. We suggest that under most circumstances, nonparametric bootstrapping will be the most appropriate method for deriving estimates of confidence intervals about density estimates. As with other approaches to estimating density from indirect sign, the method that we discuss is vulnerable to violations of an array of underlying assumptions. However, it is easily applied and could represent an important method by which the relationship between indices of abundance and absolute density can be understood.  相似文献   
98.
The relationship between body size and temperature of mammals is poorly resolved, especially for large keystone species such as bison (Bison bison). Bison are well represented in the fossil record across North America, which provides an opportunity to relate body size to climate within a species. We measured the length of a leg bone (calcaneal tuber, DstL) in 849 specimens from 60 localities that were dated by stratigraphy and 14C decay. We estimated body mass (M) as M = (DstL/11.49)3. Average annual temperature was estimated from δ18O values in the ice cores from Greenland. Calcaneal tuber length of Bison declined over the last 40,000 years, that is, average body mass was 37% larger (910 ± 50 kg) than today (665 ± 21 kg). Average annual temperature has warmed by 6°C since the Last Glacial Maximum (~24–18 kya) and is predicted to further increase by 4°C by the end of the 21st century. If body size continues to linearly respond to global temperature, Bison body mass will likely decline by an additional 46%, to 357 ± 54 kg, with an increase of 4°C globally. The rate of mass loss is 41 ± 10 kg per°C increase in global temperature. Changes in body size of Bison may be a result of migration, disease, or human harvest but those effects are likely to be local and short‐term and not likely to persist over the long time scale of the fossil record. The strong correspondence between body size of bison and air temperature is more likely the result of persistent effects on the ability to grow and the consequences of sustaining a large body mass in a warming environment. Continuing rises in global temperature will likely depress body sizes of bison, and perhaps other large grazers, without human intervention.  相似文献   
99.

Aim

The management of the rapid expansion of wild ungulate populations is a challenging task and a societal priority. Using a progressive database of red (Cervus elaphus) and roe (Capreolus capreolus) deer colonization over the last three decades, we estimate the range expansion rates and the underlying mechanisms involved in the expansion patterns of red and roe deer populations at the south‐western edge of its European distribution.

Location

Mainland Portugal.

Methods

We compiled and grouped historical red and roe deer distribution data in three time periods (1981–1990, 1991–2000 and 2001–2010). We used generalized linear mixed models to evaluate how biotic and abiotic drivers determine the expansion patterns of red and roe deer.

Results

We reported a significant expansion of red and roe deer populations during the last three decades. The significant interaction between propagule pressure and land cover suggests that the effects of propagule pressure vary along environmental gradients. We found that the influence of livestock on red and roe deer expansion is idiosyncratic. Contrary to red deer, roe deer expansion was also influenced by climatic conditions. We did not detect any significant effect of human factors on the red and roe deer expansion.

Main conclusions

The synergistic effects between variables should be taken into account when studying the patterns of species expansion. Our study emphasize that policy makers should consider the spatial, temporal, ecological and societal nuances of species expansion in order to prioritize management measures and to allocate management budgets. Although concerted strategies to curtail species spread should mitigate red and roe deer economic and ecological impacts, these effects can be neutralized by a continuous rural exodus and the consequent forest and shrub encroachment.
  相似文献   
100.
Ungulate behavior is often characterized as balancing selection for forage and avoidance of predation risk. Within partially migratory ungulate populations, this balancing occurs across multiple spatial scales, potentially resulting in different exposure to costs and benefits between migrants and residents. We assessed how availability and selection of forage and risk from predators varied between summer ranges of migrant and resident mule deer (Odocoileus hemionus; a species in which individual migratory strategies are generally fixed for life) in 3 study areas in western Montana, USA, during summers 2017–2019. We hypothesized that mule deer would face a tradeoff between selecting forage and avoiding predation risk, and that migration and residency would pose contrasting availability of forage and risk at a broad (summer range) spatial scale. We hypothesized deer exposed to lower forage at a given spatial scale would compensate for reduced availability by increasing selection of forage at the cost of reduced avoidance of predators, a mechanism whereby migrants and residents could potentially achieve similar exposure to forage despite disparate availability. We compared the availability of forage (kcal/m2) and predation risk from wolves (Canis lupus) and mountain lions (Puma concolor) between summer ranges of each migratory strategy, then assessed how selection for those factors at the home range (second order) and within-home range (third order) scales varied using resource selection functions (RSFs). As forage availability increased among mule deer summer ranges and individual home ranges, selection for forage decreased at the second-order (P = 0.052) and third-order (P = 0.081) scales, respectively, but avoidance of predators varied weakly. In 1 study area, summer range of residents contained lower forage and higher risk than summer range of migrants, but residents compensated for this disadvantage through stronger selection of forage and avoidance of risk at finer spatial scales. In the other 2 study areas, summer range of migrants contained lower forage and higher risk than residents, but migrants did not compensate through stronger selection for beneficial resources. The majority of mule deer in our study system were migratory, though the benefits of migration were unclear, suggesting partial migration may persist in populations even when exposure to forage and predation risk appears unequal between strategies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号