首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   515篇
  免费   77篇
  国内免费   4篇
  2023年   14篇
  2022年   3篇
  2021年   14篇
  2020年   25篇
  2019年   30篇
  2018年   30篇
  2017年   27篇
  2016年   14篇
  2015年   20篇
  2014年   25篇
  2013年   28篇
  2012年   23篇
  2011年   11篇
  2010年   25篇
  2009年   29篇
  2008年   33篇
  2007年   23篇
  2006年   19篇
  2005年   18篇
  2004年   22篇
  2003年   27篇
  2002年   16篇
  2001年   18篇
  2000年   12篇
  1999年   16篇
  1998年   15篇
  1997年   7篇
  1996年   10篇
  1995年   7篇
  1994年   3篇
  1993年   3篇
  1992年   6篇
  1991年   4篇
  1990年   4篇
  1989年   3篇
  1988年   3篇
  1987年   3篇
  1986年   3篇
  1981年   2篇
  1979年   1篇
排序方式: 共有596条查询结果,搜索用时 62 毫秒
91.
Fire is an integral ecological factor in African savanna ecosystems, but its effects on savanna productivity are highly variable and less understood. We conducted a field experiment to quantify changes in herbaceous phytomass and nutrient composition in a Sudanian savanna woodland subjected to annual early fire from 1993 to 2004. Fire effects were also assessed on two perennial and two annual grass species during the following growing season. Early fire significantly reduced above‐ground phytomass of the studied species (P = 0.03), their crude protein (P = 0.022), neutral detergent insoluble crude protein (P = 0.016) and concentrations of Ca, Fe and Mn (P < 0.05). Perennial grasses had higher above‐ground phytomass but lower total crude protein and fat than annual grasses. Nonstructural carbohydrates tended to be higher for annuals, while fibre and lignin contents were high for perennials. Except Na and Fe, the concentration of mineral elements varied between species. Fire did not affect measures of digestibility and metabolizable energy, but its effect differed significantly among species. In conclusion, the results illustrate that long‐term frequent fire will counterbalance the short‐term increase in soil fertility and plant nutrient concentrations claimed to be accrued from single or less frequent fire.  相似文献   
92.
Summary  Corticioid fungi from the Kimberley Region of Western Australia are reviewed. 31 species are reported, of which five, Aleurodiscus kimberleyanus, Athelopsis vesicularis, Dendrothele cornivesiculosa, Hyphoderma tubulicystidium, and Phanerochaete subcrassispora are described as new. Grandinia glauca is given the new combination Grammothele glauca, and Hydnum investiens the new combination Phanerochaete investiens. A further eight species are recorded which have not previously been reported from Australia.  相似文献   
93.
Fallen branches are a substantial component of coarse woody debris and a key ecological resource. The depletion of stocks of coarse woody debris since European settlement has contributed to the degradation of Australian grassy box woodlands, including the loss of biodiversity. Restoration options for remnant woodlands include the augmentation of coarse woody debris stocks. However, the extensive modification of grassy box woodlands has left few reference sites for establishing benchmarks to guide such restoration. In this paper we demonstrate a method for predicting fallen branch debris loads in the absence of reference sites, using data from a yellow box–red gum woodland. Our methodology is in two stages: first, the total volume of branch debris under individual trees was modelled; and second, these models were applied to groups of trees to predict stand‐level loads of fallen branch debris. Although the models were developed for yellow box–red gum woodlands, the methodology would be applicable to other communities that lack reference sites. Predicted benchmark loads of fallen branch debris for yellow box–red gum woodland were between 7.0 m3 ha?1 and 11.9 m3 ha?1. Large senescing trees contributed the bulk of fallen branch debris. Model predictions indicated a 100‐cm diameter at breast height (dbh) tree was 10 times more likely to produce debris than a 50‐cm dbh tree, and if debris was present a 100‐cm dbh tree produced approximately 10 times the volume of branch debris produced by a 50‐cm dbh tree. These results highlight the importance of large senescing trees for the production of fallen branch debris and support the keystone role of large trees within remnant woodlands, and the need to conserve these structures. Our results also support the active management of regrowth woodland stands to facilitate the progression of individual trees to maturity and senescence. In particular, thinning of regrowth stands may promote the growth of retained trees, ensuring they contribute to fallen branch debris stocks with a minimum time lag.  相似文献   
94.
Tropical savannas are typically highly productive yet fire‐prone ecosystems, and it has been suggested that reducing fire frequency in savannas could substantially increase the size of the global carbon sink. However, the long‐term demographic consequences of modifying fire regimes in savannas are difficult to predict, with the effects of fire on many parameters, such as tree growth rates, poorly understood. Over 10 years, we examined the effects of fire frequency on the growth rates (annual increment of diameter at breast height) of 3075 tagged trees, at 137 locations throughout the mesic savannas of Kakadu, Nitmiluk and Litchfield National Parks, in northern Australia. Frequent fires substantially reduced tree growth rates, with the magnitude of the effect markedly increasing with fire severity. The highest observed frequencies of mild, moderate and severe fires (1.0, 0.8 and 0.4 fires yr?1, respectively) reduced tree growth by 24%, 40% and 66% respectively, relative to unburnt areas. These reductions in tree growth imply reductions in the net primary productivity of trees by between 0.19 t C ha?1 yr?1, in the case of mild fires, and 0.51 t C ha?1 yr?1, in the case of severe fires. Such reductions are relatively large, given that net biome productivity (carbon sequestration potential) of these savannas is estimated to be just 1–2 t C ha?1 yr?1. Our results suggest that current models of savanna tree demography, that do not account for a relationship between severe fire frequency and tree growth rate, are likely to underestimate the long‐term negative effects of frequent severe fires on tree populations. Additionally, the negative impact of frequent severe fires on carbon sequestration rates may have been underestimated; reducing fire frequencies in savannas may increase carbon sequestration to a greater extent than previously thought.  相似文献   
95.
Although natural populations of drosophilid flies have been the subject of ecological studies, the population ecology of these insects in the tropics is still poorly known. This paper discusses aspects of the relationship between drosophilids and their environment, based on 28 monthly collections made in two contrasting vegetations of the Brazilian Cerrado biome: gallery forest and savanna. Exotic species were found in both types of environment; but 14 of the 30 captured Neotropical species occurred exclusively in the gallery forests, probably because of their climatic stability and greater environmental heterogeneity. Even though some endemic species were more abundant in the dry and cold months, most populations exhibited peaks of abundance in the wet season. The species diversity indexes (H' and D), higher in the dry season, were probably affected by increased evenness at this time of year, when the populations of practically all the species are greatly reduced. As species richness in the savanna vegetation clearly decreased in the dry season, increasing again in the wet season, it is suggested that some drosophilids migrate to the forests when climatic conditions are too stressful in the savannas.  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 87 , 233–247.  相似文献   
96.
Aims Mesic grasslands have a long evolutionary history of grazing by large herbivores and as a consequence, grassland species have numerous adaptations allowing them to respond favourably to grazing. Although empirical evidence has been equivocal, theory predicts that such adaptations combined with alterations in resources can lead to grazing-induced overcompensation in aboveground net primary production (ANPP; grazed ANPP> ungrazed ANPP) under certain conditions. We tested two specific predictions from theory. First, overcompensation is more likely to occur in annually burned grasslands because limiting nutrients that would be lost with frequent fires are recycled through grazers and stimulate ANPP. Second, overcompensation of biomass lost to grazers is more likely to occur in unburned sites where grazing has the greatest effect on increasing light availability through alterations in canopy structure.Methods We tested these nutrient versus light-based predictions in grazed grasslands that had been annually burned or protected from fire for>20 years. We assessed responses in ANPP to grazing by large ungulates using both permanent and moveable grazing exclosures (252 exclosures from which biomass was harvested from 3192 quadrats) in a 2-year study. Study sites were located at the Konza Prairie Biological Station (KPBS) in North America and at Kruger National Park (KNP) in South Africa. At KPBS, sites were grazed by North American bison whereas in KNP sites were grazed either by a diverse suite of herbivores (e.g. blue wildebeest, Burchell's zebra, African buffalo) or by a single large ungulate (African buffalo).Important findings We found no evidence for overcompensation in either burned or unburned sites, regardless of grazer type. Thus, there was no support for either mechanism leading to overcompensation. Instead, complete compensation of total biomass lost to grazers was the most common response characterizing grazing–ANPP relationships with, in some cases, undercompensation of grass ANPP being offset by increased ANPP of forbs likely due to competitive release. The capability of these very different grass-dominated systems to maintain ANPP while being grazed has important implications for energy flow, ecosystem function and the trophic dynamics of grasslands.  相似文献   
97.
Savanna vegetation is controlled by bottom‐up (e.g. soil and rainfall) and top–down (e.g. fire and herbivory) factors, all of which have an effect on biodiversity. Little is known about the relative contribution of these factors to biodiversity, particularly the long‐term effects of top–down disturbance on patterns of woody plant composition. The aim of this study was to identify if various degrees of disturbance regimes create distinct woody species community assemblages. Data were collected over 1820 plots across Kruger National Park, South Africa. Woody species were identified and categorized into one of three height classes: shrub (0.75–2.5 m), brush (2.5–5.5 m), and tree (>5.5 m). Species richness and composition were calculated for each site and height class. A combination of long‐term fire and elephant density data were used to delineate areas with varying degrees of top–down disturbance (i.e. low, medium and high). Using these degrees of disturbance, species composition was identified and community assemblages constructed according to each disturbance regime. Our results suggest that areas with similar disturbance regimes have similar species composition. Shrub composition was mainly responsive to the number of fires between the years 1941–1990, while tree composition was more responsive to elephant disturbance. A few dominant species were found equally under all degrees of disturbance at all height classes, while others were more regularly found under specific disturbance regimes at particular height classes. This study highlights that while species richness does not appear to be influenced by long‐term, top–down disturbance regimes, species community composition may be responsive to these disturbances. Most species and structural classes persisted across all disturbance regimes, but the long‐term effects of top–down disturbances can influence compositional and structural biodiversity. This information provides context for management policies related to artificial water provision, elephants and fire.  相似文献   
98.
Survival and life expectancy are key demographic determinants of population dynamics. Using data collected in a field experiment monitored over 14 years in montane grassland of the Ukhahlamba‐Drakensberg Park, South Africa, we determined the effects of components of fire regime and plant structure on the survival and life expectancy of the tree Protea roupelliae subsp. roupelliae (Proteaceae). The field experiment comprised six plots (0.2–0.5 ha in area) from which the survival and life expectancies of 1567 juveniles (non‐reproductives) and 329 adults (reproductives) were estimated in response to differences in fire frequency, biennial seasonal fire, flame height, juvenile height, adult height, basal area and canopy vigour. Juvenile survival and life expectancies were highest when fires were excluded for 8 years. However, a fire after 12 years of fire exclusion and another fire 2 years later eliminated all juveniles. Over the same 14‐year period of biennial fires, juvenile survival was 5%. Juvenile survival and life expectancy were higher after biennial, winter fires than after annual, winter fires. Flame height had no effect on juvenile survival and life expectancy. Both survival and life expectancy of juveniles increased as plants got older and grew taller. Adult survival was unaffected by fire frequency, flame height or tree size, but the survival of adults in response to fire seasonality was inconclusive. Adults with low canopy vigour (<25%) were negatively affected by fire. Juvenile survival and life expectancy are critical bottlenecks in the demography of P. roupelliae. This species is neither a reseeder nor a resprouter. It avoids lethal fire damage by being restricted to rocky habitats with low fire intensities. Biennial winter fires least threaten the survival and life expectancy of P. roupelliae and impact least on its role in the summer feeding and breeding of Gurney's sugarbird.  相似文献   
99.
Multiple stable states, bifurcations and thresholds are fashionable concepts in the ecological literature, a recognition that complex ecosystems may at times exhibit the interesting dynamic behaviours predicted by relatively simple biomathematical models. Recently, several papers in Global Ecology and Biogeography, Proceedings of the National Academy of Sciences USA, Science and elsewhere have attempted to quantify the prevalence of alternate stable states in the savannas of Africa, Australia and South America, and the tundra–taiga–grassland transitions of the circum‐boreal region using satellite‐derived woody canopy cover. While we agree with the logic that basins of attraction can be inferred from the relative frequencies of ecosystem states observed in space and time, we caution that the statistical methodologies underlying the satellite product used in these studies may confound our ability to infer the presence of multiple stable states. We demonstrate this point using a uniformly distributed ‘pseudo‐tree cover’ database for Africa that we use to retrace the steps involved in creation of the satellite tree‐cover product and subsequent analysis. We show how classification and regression tree (CART)‐based products may impose discontinuities in satellite tree‐cover estimates even when such discontinuities are not present in reality. As regional and global remote sensing and geospatial data become more easily accessible for ecological studies, we recommend careful consideration of how error distributions in remote sensing products may interact with the data needs and theoretical expectations of the ecological process under study.  相似文献   
100.
Rainfall controls fire in tropical savanna ecosystems through impacting both the amount and flammability of plant biomass, and consequently, predicted changes in tropical precipitation over the next century are likely to have contrasting effects on the fire regimes of wet and dry savannas. We reconstructed the long‐term dynamics of biomass burning in equatorial East Africa, using fossil charcoal particles from two well‐dated lake‐sediment records in western Uganda and central Kenya. We compared these high‐resolution (5 years/sample) time series of biomass burning, spanning the last 3800 and 1200 years, with independent data on past hydroclimatic variability and vegetation dynamics. In western Uganda, a rapid (<100 years) and permanent increase in burning occurred around 2170 years ago, when climatic drying replaced semideciduous forest by wooded grassland. At the century time scale, biomass burning was inversely related to moisture balance for much of the next two millennia until ca. 1750 ad , when burning increased strongly despite regional climate becoming wetter. A sustained decrease in burning since the mid20th century reflects the intensified modern‐day landscape conversion into cropland and plantations. In contrast, in semiarid central Kenya, biomass burning peaked at intermediate moisture‐balance levels, whereas it was lower both during the wettest and driest multidecadal periods of the last 1200 years. Here, burning steadily increased since the mid20th century, presumably due to more frequent deliberate ignitions for bush clearing and cattle ranching. Both the observed historical trends and regional contrasts in biomass burning are consistent with spatial variability in fire regimes across the African savanna biome today. They demonstrate the strong dependence of East African fire regimes on both climatic moisture balance and vegetation, and the extent to which this dependence is now being overridden by anthropogenic activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号