首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   261篇
  免费   12篇
  国内免费   11篇
  2023年   6篇
  2022年   9篇
  2021年   10篇
  2020年   17篇
  2019年   18篇
  2018年   20篇
  2017年   7篇
  2016年   12篇
  2015年   8篇
  2014年   21篇
  2013年   20篇
  2012年   8篇
  2011年   28篇
  2010年   13篇
  2009年   13篇
  2008年   14篇
  2007年   14篇
  2006年   16篇
  2005年   10篇
  2004年   5篇
  2003年   4篇
  2002年   2篇
  2001年   2篇
  1997年   2篇
  1995年   1篇
  1994年   2篇
  1989年   2篇
排序方式: 共有284条查询结果,搜索用时 31 毫秒
91.
Staphylococcus aureus is a Gram-positive pathogen that causes opportunistic infections and a wide variety of diseases. Methicillin-resistant S. aureus (MRSA) is frequently isolated as multidrug-resistant in nosocomial and community infections. Molecular genetic manipulation is an important tool for understanding the molecular mechanism of S. aureus infection. However the number of available antibiotic markers is limited due to multidrug resistance. In this study, we constructed two Escherichia coli-S. aureus shuttle vectors, pKFT and pKFC, that carry a temperature-sensitive origin of replication in S. aureus, lacZ(a) enabling a simple blue-white screening in E. coli, an ampicillin resistant gene, and either a tetracycline resistance gene or a chloramphenicol resistance gene. We report a simple technique using pKFT to construct a markerless gene deletion mutant in S. aureus by allelic replacement without the use of a counter-selection marker. Subculture twice at 25 °C was critical to promote an allelic exchange rate in S. aureus. This technique is very simple and useful to facilitate genetic research on S. aureus.  相似文献   
92.
Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) are causing an ongoing pandemic of mostly skin and soft tissue infections. The success of CA-MRSA as pathogens is due to a combination of antibiotic resistance with high virulence. In addition, it has been speculated that CA-MRSA strains such as the epidemic U.S. clone USA300 have increased capacity to colonize human epithelia, owing to bacteriocin-based bacterial interference. We here analyzed the molecular basis of antimicrobial activity detected in S. aureus strains, including those of the USA300 lineage. In contrast to a previous hypothesis, we found that this activity is not due to expression of a lantibiotic-type bacteriocin, but proteolytically processed derivatives of the phenol-soluble modulin (PSM) peptides PSMα1 and PSMα2. Notably, processed PSMα1 and PSMα2 exhibited considerable activity against Streptococcus pyogenes, indicating a role of PSMs in the interference of S. aureus strains with the competing colonizing pathogen. Furthermore, by offering a competitive advantage during colonization of the human body, the characteristically high production of PSMs in USA300 and other CA-MRSA strains may thus contribute not only to virulence but also the exceptional capacity of those strains to sustainably spread in the population, which so far has remained poorly understood.  相似文献   
93.
Novel classes of antimicrobials are needed to address the emergence of multidrug-resistant bacteria such as methicillin-resistant Staphylococcus aureus (MRSA). We have recently identified pyruvate kinase (PK) as a potential novel drug target based upon it being an essential hub in the MRSA interactome (Cherkasov, A., Hsing, M., Zoraghi, R., Foster, L. J., See, R. H., Stoynov, N., Jiang, J., Kaur, S., Lian, T., Jackson, L., Gong, H., Swayze, R., Amandoron, E., Hormozdiari, F., Dao, P., Sahinalp, C., Santos-Filho, O., Axerio-Cilies, P., Byler, K., McMaster, W. R., Brunham, R. C., Finlay, B. B., and Reiner, N. E. (2011) J. Proteome Res. 10, 1139-1150; Zoraghi, R., See, R. H., Axerio-Cilies, P., Kumar, N. S., Gong, H., Moreau, A., Hsing, M., Kaur, S., Swayze, R. D., Worrall, L., Amandoron, E., Lian, T., Jackson, L., Jiang, J., Thorson, L., Labriere, C., Foster, L., Brunham, R. C., McMaster, W. R., Finlay, B. B., Strynadka, N. C., Cherkasov, A., Young, R. N., and Reiner, N. E. (2011) Antimicrob. Agents Chemother. 55, 2042-2053). Screening of an extract library of marine invertebrates against MRSA PK resulted in the identification of bis-indole alkaloids of the spongotine (A), topsentin (B, D), and hamacanthin (C) classes isolated from the Topsentia pachastrelloides as novel bacterial PK inhibitors. These compounds potently and selectively inhibited both MRSA PK enzymatic activity and S. aureus growth in vitro. The most active compounds, cis-3,4-dihyrohyrohamacanthin B (C) and bromodeoxytopsentin (D), were identified as highly potent MRSA PK inhibitors (IC(50) values of 16-60 nM) with at least 166-fold selectivity over human PK isoforms. These novel anti-PK natural compounds exhibited significant antibacterial activities against S. aureus, including MRSA (minimal inhibitory concentrations (MIC) of 12.5 and 6.25 μg/ml, respectively) with selectivity indices (CC(50)/MIC) >4. We also report the discrete structural features of the MRSA PK tetramer as determined by x-ray crystallography, which is suitable for selective targeting of the bacterial enzyme. The co-crystal structure of compound C with MRSA PK confirms that the latter is a target for bis-indole alkaloids. It elucidates the essential structural requirements for PK inhibitors in "small" interfaces that provide for tetramer rigidity and efficient catalytic activity. Our results identified a series of natural products as novel MRSA PK inhibitors, providing the basis for further development of potential novel antimicrobials.  相似文献   
94.
Bacterial fatty acid synthesis (FAS) is a potentially important, albeit controversial, target for antimicrobial therapy. Recent studies have suggested that the addition of exogenous fatty acids (FAs) to growth media can circumvent the effects of FAS-targeting compounds on bacterial growth. Consequently, such agents may have limited in vivo applicability for the treatment of human disease, as free FAs are abundant within the body. Our group has previously developed N-thiolated β-lactams and found they function by interfering with FAS in select pathogenic bacteria, including MRSA. To determine if the FAS targeting activity of N-thiolated β-lactams can be abrogated by exogenous fatty acids, we performed MIC determinations for MRSA strains cultured with the fatty acids oleic acid and Tween 80. We find that, whilst the activity of the known FAS inhibitor triclosan is severely compromised by the addition of both oleic acid and Tween 80, exogenous FAs do not mitigate the antibacterial activity of N-thiolated β-lactams towards MRSA. Consequently, we propose that N-thiolated β-lactams are unique amongst FAS-inhibiting antimicrobials, as their effects are unimpeded by exogenous FAs.  相似文献   
95.
A 3D-QSAR analysis has been carried out by comparative molecular field analysis (CoMFA) on a series of distamycin analogs that bind to the DNA of drug-resistant bacterial strains MRSA, PRSP and VSEF. The structures of the molecules were derived from the X-ray structure of distamycin bound to DNA and were aligned using the Database alignment method in Sybyl. Statistically significant CoMFA models for each activity were generated. The CoMFA contours throw light on the structure activity relationship (SAR) and help to identify novel features that can be incorporated into the distamycin framework to improve the activity. Common contours have been gleaned from the three models to construct a unified model that explains the steric and electrostatic requirements for antimicrobial activity against the three resistant strains. Figure A unified CoMFA model for broad-spectrum DNA minor-groove binders  相似文献   
96.
AIMS: To evaluate the prevalence of methicillin-resistant staphylococcal (MRS) colonization in clinically normal dogs and horses in the community. METHODS AND RESULTS: Three hundred clinically normal horses and 200 clinically normal dogs were enrolled. One nasal swab was collected from each horse. Two swabs were taken from each dog: (i) from an anterior nare, and (ii) a combination of the perineal area and 0.5 cm into the anus. Enrichment cultures were performed. Methicillin-resistant Staphylococcus aureus (MRSA) was not identified. Methicillin-resistant Staphylococcus intermedius (MRSI) was isolated from the nasal swab from three dogs. Methicillin-resistant coagulase negative staphylococci (MRCoNS) were isolated from 126/300 (42%) horses and 26/200 (13%) dogs. CONCLUSIONS: At present MRSI is not considered to be a significant zoonotic concern; however, it may become an important pathogen in dogs. MRCoNS mostly cause disease in compromised human or animal hosts. However, these bacteria can serve as reservoirs of resistance determinants in the community, which could lead to the emergence of novel MRSA strains. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first report of the prevalence of MRS colonization in clinically normal dogs in a community setting. Continued surveillance is indicated to determine whether MRSA will emerge in the animal population and become a concern for animal disease and zoonotic infection.  相似文献   
97.
张建中 《微生物学通报》2016,43(8):1872-1872
正细菌的耐药问题已经成为一种全球性的严重威胁[1],耐甲氧西林金黄色葡萄球菌(MRSA)、多重耐药鲍曼不动杆菌和耐药性艰难梭菌等多种耐药细菌感染疾病负担巨大,中国的情况尤其严重。近期中国研究团队在动物和人源细菌中均发现了一种新型的位于细菌质粒上的粘菌素耐药基因mcr-1[2],使细菌耐药问题受到进一步关注。本刊2015年第1期刊登了杨永刚、陈瑜等的研究文章"耐甲氧西林金黄色葡萄球菌分型及流行现状"[3],  相似文献   
98.
Angela Oates 《Biofouling》2016,32(1):25-33
Sessile cultures of the skin bacteria Staphylococcus saprophyticus and Corynebacterium xerosis were grown using novel fine-celled foam substrata to test the outcome of challenge by methicillin-resistant Staphylococcus aureus or Pseudomonas aeruginosa under three growth medium regimens (simulated sweat, simulated serum or simulated sweat substituted with simulated serum during the microbial challenge). S. saprophyticus and C. xerosis significantly limited MRSA and P. aeruginosa immigration respectively, under the simulated sweat and serum medium regimes. Under the substitution medium regime however, MRSA and P. aeruginosa integrated into pre-established biofilms to a significantly greater extent, attaining cell densities similar to the axenic controls. The outcome of challenge was influenced by the medium composition and test organism but could not be predicted based on planktonic competition assays or growth dynamics. Interactions between skin and wound isolates could be modelled using the fine-celled foam-based system. This model could be used to further investigate interactions and also in preclinical studies of antimicrobial wound care regimens.  相似文献   
99.
Methicillin-resistant Staphylococcus aureus (MRSA) has long been a common pathogen in healthcare facilities, but now, it has emerged as a problematic pathogen in the community setting as well. This study reported source, diagnosis and treatment of HA-MRSA and CA-MRSA.A total of sixty-five clinical samples (urine, pus, wound swab) were collected from clinical origin of Dhaka city, Bangladesh. All the isolates were tested phenotypically by conventional methods and genotypically by PCR targeting nuc, pvl and mecA genes. Finally sequencing was carried out for pvl gene to know the mutagenic variation or any amino acid changes in pvl gene. Chi square test was employed for statistical analysis. Patients of age group 51–60?years are more susceptible (46.15%) to MRSA, CA-MRSA or HA-MRSA infection. Female are (32.30%) more susceptible to MRSA infection. Among 65 isolates 53 isolates identified phenotypically as S. aureus. These were positive for amplification of nuc (270?bp) gene of S. aureus. Moreover, among 53 isolates 33 phenotypically considered as MRSA and 38 (72%) showed positive amplification for mecA (162?bp) gene. Among 38 MRSA isolates 22 (57.89%) confirmed as CA-MRSA and 16 (42.10%) as HA-MRSA. Finally, sequence analysis for lukS/F-PV genes from 4 representative isolates detected a new single nucleotide polymorphism in comparison with the control sequence. However, no amino acid changes were found. Statistical analysis showed HA-MRSA isolates were more commonly found in urine sample and CA-MRSA in pus and wound swab. CA-MRSA isolates were more resistant to tested antibiotics than HA-MRSA.  相似文献   
100.
An in vitro model was developed to assess the effects of topical antimicrobials on taxonomically defined wound biofilms. Biofilms were exposed over seven days to povidone-iodine, silver acetate or polyhexamethylene biguanide (PHMB) at concentrations used in wound dressings. The rank order of tolerance in multi-species biofilms, based on an analysis of the average bacterial counts over time was P. aeruginosa > methicillin-resistant Staphylococcus aureus (MRSA) > B. fragilis > S. pyogenes. The rank order of effectiveness for the antimicrobials in the biofilm model was povidone-iodine > PHMB > silver acetate. None of the test compounds eradicated P. aeruginosa or MRSA from the biofilms although all compounds except silver acetate eliminated S. pyogenes. Antimicrobial effectiveness against bacteria grown in multi-species biofilms did not correlate with planktonic susceptibility. Defined biofilm populations of mixed-species wound pathogens could be maintained in the basal perfusion model, facilitating the efficacy testing of treatments regimens and potential dressings against multi-species biofilms composed of wound isolates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号