首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3534篇
  免费   310篇
  国内免费   2篇
  2023年   16篇
  2022年   13篇
  2021年   61篇
  2020年   33篇
  2019年   50篇
  2018年   93篇
  2017年   79篇
  2016年   104篇
  2015年   168篇
  2014年   207篇
  2013年   269篇
  2012年   305篇
  2011年   262篇
  2010年   174篇
  2009年   161篇
  2008年   226篇
  2007年   209篇
  2006年   220篇
  2005年   199篇
  2004年   205篇
  2003年   192篇
  2002年   175篇
  2001年   39篇
  2000年   24篇
  1999年   36篇
  1998年   39篇
  1997年   26篇
  1996年   25篇
  1995年   32篇
  1994年   21篇
  1993年   22篇
  1992年   12篇
  1991年   14篇
  1990年   14篇
  1989年   21篇
  1988年   12篇
  1987年   6篇
  1986年   6篇
  1985年   5篇
  1984年   5篇
  1983年   6篇
  1982年   9篇
  1981年   6篇
  1980年   8篇
  1979年   4篇
  1978年   8篇
  1977年   3篇
  1976年   4篇
  1974年   3篇
  1960年   3篇
排序方式: 共有3846条查询结果,搜索用时 203 毫秒
91.
92.
According to receptor theory, the effect of a ligand depends on the amount of agonist–receptor complex. Therefore, changes in receptor abundance should have quantitative effects. However, the response to pheromone in Saccharomyces cerevisiae is robust (unaltered) to increases or reductions in the abundance of the G‐protein‐coupled receptor (GPCR), Ste2, responding instead to the fraction of occupied receptor. We found experimentally that this robustness originates during G‐protein activation. We developed a complete mathematical model of this step, which suggested the ability to compute fractional occupancy depends on the physical interaction between the inhibitory regulator of G‐protein signaling (RGS), Sst2, and the receptor. Accordingly, replacing Sst2 by the heterologous hsRGS4, incapable of interacting with the receptor, abolished robustness. Conversely, forcing hsRGS4:Ste2 interaction restored robustness. Taken together with other results of our work, we conclude that this GPCR pathway computes fractional occupancy because ligand‐bound GPCR–RGS complexes stimulate signaling while unoccupied complexes actively inhibit it. In eukaryotes, many RGSs bind to specific GPCRs, suggesting these complexes with opposing activities also detect fraction occupancy by a ratiometric measurement. Such complexes operate as push‐pull devices, which we have recently described.  相似文献   
93.
94.
Both ecological and evolutionary mechanisms have been proposed to describe how natural communities become assembled at both regional and biogeographical scales. Yet, these theories have largely been developed in isolation. Here, we unite these separate views and develop an integrated eco‐evolutionary framework of community assembly. We use a simulation approach to explore the factors determining the interplay between ecological and evolutionary mechanisms systematically across spatial scales. Our results suggest that the same set of ecological and evolutionary processes can determine community assembly at both regional and biogeographical scales. We find that the importance of evolution and community monopolization effects, defined as the eco‐evolutionary dynamics that occur when local adaptation of early established immigrants is fast enough to prevent the later immigration of better pre‐adapted species, are not restricted to adaptive radiations on remote islands. They occur at dispersal rates of up to ten individuals per generation, typical for many species at the scale of regional metacommunities. Dispersal capacity largely determines whether ecological species sorting or evolutionary monopolization structure metacommunity diversity and distribution patterns. However, other factors related to the spatial scale at which community assembly processes are acting, such as metacommunity size and the proportion of empty patches, also affect the relative importance of ecology versus evolution. We show that evolution often determines community assembly, and this conclusion is robust to a wide range of assumptions about spatial scale, mode of reproduction, and environmental structure. Moreover, we found that community monopolization effects occur even though species fully pre‐adapted to each habitat are abundant in the metacommunity, a scenario expected a priori to prevent any meaningful effect of evolution. Our results strongly support the idea that the same eco‐evolutionary processes underlie community assembly at regional and biogeographical scales.  相似文献   
95.

Treatments with high-voltage electrical discharges (HVED) and high-pressure homogenization (HPH) were studied and compared for the release of ionic components, carbohydrates, proteins, and pigments from microalgae Parachlorella kessleri (P. kessleri). Suspensions (1% w/w) of microalgae were treated by HVED (40 kV/cm, 1–8 ms) or by HPH (400–1200 bar, 1–10 passes). Particle-size distribution (PSD) and microscopic analyses were used to detect the disruption and damage of cells. HVED were very effective for the extraction of ionic cell components and carbohydrates (421 mg/L after 8 ms of the treatment). However, HVED were ineffective for pigments and protein extraction. The concentration of proteins extracted by HVED was just 750 mg/L and did not exceed 15% of the total quantity of proteins. HPH permitted an effective release overall of intracellular compounds from P. kessleri microalgae including a large quantity of proteins, whose release (at 1200 bar) was 4.9 times higher than that obtained by HVED. Consequently, HVED can be used at the first step of the overall extraction process for the selective recovery of low-molecular-weight components. HPH can be then used at the second step for the recovery of remaining cell compounds.

  相似文献   
96.
Bioprocess and Biosystems Engineering - Microalgae of Nannochloropsis sp. present valuable source of bio-molecules (pigments, lipids, proteins) that have nutritional potential for the...  相似文献   
97.
98.
Determining the species compositions of local assemblages is a prerequisite to understanding how anthropogenic disturbances affect biodiversity. However, biodiversity measurements often remain incomplete due to the limited efficiency of sampling methods. This is particularly true in freshwater tropical environments that host rich fish assemblages, for which assessments are uncertain and often rely on destructive methods. Developing an efficient and nondestructive method to assess biodiversity in tropical freshwaters is highly important. In this study, we tested the efficiency of environmental DNA (eDNA) metabarcoding to assess the fish diversity of 39 Guianese sites. We compared the diversity and composition of assemblages obtained using traditional and metabarcoding methods. More than 7,000 individual fish belonging to 203 Guianese fish species were collected by traditional sampling methods, and ~17 million reads were produced by metabarcoding, among which ~8 million reads were assigned to 148 fish taxonomic units, including 132 fish species. The two methods detected a similar number of species at each site, but the species identities partially matched. The assemblage compositions from the different drainage basins were better discriminated using metabarcoding, revealing that while traditional methods provide a more complete but spatially limited inventory of fish assemblages, metabarcoding provides a more partial but spatially extensive inventory. eDNA metabarcoding can therefore be used for rapid and large‐scale biodiversity assessments, while at a local scale, the two approaches are complementary and enable an understanding of realistic fish biodiversity.  相似文献   
99.
Most hypotheses to explain nonrandom mating patterns invoke mate choice, particularly in species that display elaborate ornaments. However, conflicting selection pressures on traits can result in functional constraints that can also cause nonrandom mating patterns. We tested for functional load‐lifting constraints during aerial copulation in Rhamphomyia longicauda, a species of dance fly that displays multiple extravagant female‐specific ornaments that are unusual among sexual traits because they are under stabilizing selection. R. longicauda males provide females with a nuptial gift before engaging in aerial mating, and the male bears the entire weight of the female and nuptial gift for the duration of copulation. In theory, a male's ability to carry females and nuptial gifts could constrain pairing opportunities for the heaviest females, as reported for nonornamented dance flies. In concert with directional preferences for large females with mature eggs, such a load‐lifting constraint could produce the stabilizing selection on female size previously observed in this species. We therefore tested whether wild‐caught male R. longicauda collected during copulation were experiencing load‐lift limitations by comparing the mass carried by males during copulation with the male's wing loading traits. We also performed permutation tests to determine whether the loads carried by males during copulation were lighter than expected. We found that heavier males are more often found mating with heavier females suggesting that whereas R. longicauda males do not experience a load‐lift constraint, there is a strong relationship of assortative mating by mass. We suggest that active male mate choice for intermediately adorned females is more likely to be causing the nonrandom mating patterns observed in R. longicauda.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号