首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1880篇
  免费   189篇
  2021年   18篇
  2020年   14篇
  2018年   17篇
  2017年   15篇
  2016年   32篇
  2015年   56篇
  2014年   52篇
  2013年   64篇
  2012年   98篇
  2011年   82篇
  2010年   46篇
  2009年   55篇
  2008年   81篇
  2007年   72篇
  2006年   82篇
  2005年   78篇
  2004年   55篇
  2003年   58篇
  2002年   89篇
  2001年   71篇
  2000年   77篇
  1999年   51篇
  1998年   21篇
  1997年   21篇
  1996年   18篇
  1995年   16篇
  1994年   20篇
  1993年   17篇
  1992年   51篇
  1991年   47篇
  1990年   40篇
  1989年   38篇
  1988年   39篇
  1987年   30篇
  1986年   28篇
  1985年   35篇
  1984年   25篇
  1983年   18篇
  1982年   18篇
  1981年   17篇
  1979年   27篇
  1978年   11篇
  1977年   21篇
  1976年   19篇
  1974年   14篇
  1973年   11篇
  1972年   18篇
  1971年   17篇
  1969年   21篇
  1967年   11篇
排序方式: 共有2069条查询结果,搜索用时 19 毫秒
91.
The involvement of cyclic AMP in corticosteroidogenesis was investigated by using isolated adrenal cell column perfusion. Steroids were produced in response to 0.5, 1.0 and 5.0 mg of cyclic AMP/ml. Analysis of the shape of the response curves indicated an inverse relationship between rate of onset of steroid production and dose. A further increase in steroid production during the washout period after the 5 mg/ml dose was considered to indicate an intracellular inhibitory effect of cyclic AMP. Release of cyclic AMP into the perfusate only occurred in response to supramaximal steroidogenic doses of ACTH (adrenocorticotrophin). A connexion between dose and response was demonstrated over a narrow concentration range. Variation in the time-lag before cyclic AMP production and in the duration of the response was marked; further, no reproducible ratio of steroid output to cyclic AMP output was shown at any level of stimulation. These results are discussed together with those of other recent investigations. It is considered that these findings do not support an obligatory role for cyclic AMP as mediator of ACTH action in the adrenal.  相似文献   
92.
93.
94.
Recent empirical studies have focused attention on the interplay in multi-host systems of parasite-mediated apparent competition and direct competition between hosts. However, theoretical investigation of such systems has been hindered by the onset of algebraic intractability with the increase in system dimensionality. In this paper we circumvent this problem by using a geometric approach in which arrays of bifurcation maps are constructed, each map being structured by the set of (bifurcation) points in parameter space at which qualitative changes in system behaviour take place. From these maps can be compiled a concise catalogue of the possible modes of system behaviour, enabling an investigation of the interaction of apparent and direct competitive forces to be carried out. Of importance is the identification of those situations where increasing one or both of these competitive forces leads to a change in the stability state. The maps provide an efficient way of determining whether, and, if so, under what conditions, specific modes of behaviour are allowed by the model. Two field phenomena of particular interest, discussed in the paper, are host invasion and dominance reversal resulting from the introduction of the pathogen into a directly competitive system.  相似文献   
95.
Neurodevelopmental disorders are characterized by deficits in communication, cognition, attention, social behavior and/or motor control. Previous studies have pointed to the involvement of genes that regulate synaptic structure and function in the pathogenesis of these disorders. One such gene, GRM7, encodes the metabotropic glutamate receptor 7 (mGlu7), a G protein‐coupled receptor that regulates presynaptic neurotransmitter release. Mutations and polymorphisms in GRM7 have been associated with neurodevelopmental disorders in clinical populations; however, limited preclinical studies have evaluated mGlu7 in the context of this specific disease class. Here, we show that the absence of mGlu7 in mice is sufficient to alter phenotypes within the domains of social behavior, associative learning, motor function, epilepsy and sleep. Moreover, Grm7 knockout mice exhibit an attenuated response to amphetamine. These findings provide rationale for further investigation of mGlu7 as a potential therapeutic target for neurodevelopmental disorders such as idiopathic autism, attention deficit hyperactivity disorder and Rett syndrome.  相似文献   
96.
Analyses of publicly available structural data reveal interesting insights into the impact of the three‐dimensional (3D) structures of protein targets important for discovery of new drugs (e.g., G‐protein‐coupled receptors, voltage‐gated ion channels, ligand‐gated ion channels, transporters, and E3 ubiquitin ligases). The Protein Data Bank (PDB) archive currently holds > 155,000 atomic‐level 3D structures of biomolecules experimentally determined using crystallography, nuclear magnetic resonance spectroscopy, and electron microscopy. The PDB was established in 1971 as the first open‐access, digital‐data resource in biology, and is now managed by the Worldwide PDB partnership (wwPDB; wwPDB.org ). US PDB operations are the responsibility of the Research Collaboratory for Structural Bioinformatics PDB (RCSB PDB). The RCSB PDB serves millions of RCSB.org users worldwide by delivering PDB data integrated with ~40 external biodata resources, providing rich structural views of fundamental biology, biomedicine, and energy sciences. Recently published work showed that the PDB archival holdings facilitated discovery of ~90% of the 210 new drugs approved by the US Food and Drug Administration 2010–2016. We review user‐driven development of RCSB PDB services, examine growth of the PDB archive in terms of size and complexity, and present examples and opportunities for structure‐guided drug discovery for challenging targets (e.g., integral membrane proteins).  相似文献   
97.
Certain transglucanases can covalently graft cellulose and mixed-linkage β-glucan (MLG) as donor substrates onto xyloglucan as acceptor substrate and thus exhibit cellulose:xyloglucan endotransglucosylase (CXE) and MLG:xyloglucan endotransglucosylase (MXE) activities in vivo and in vitro. However, missing information on factors that stimulate or inhibit these hetero-transglucosylation reactions limits our insight into their biological functions. To explore factors that influence hetero-transglucosylation, we studied Equisetum fluviatile hetero-trans-β-glucanase (EfHTG), which exhibits both CXE and MXE activity, exceeding its xyloglucan:xyloglucan homo-transglucosylation (XET) activity. Enzyme assays employed radiolabelled and fluorescently labelled oligomeric acceptor substrates, and were conducted in vitro and in cell walls (in situ). With whole denatured Equisetum cell walls as donor substrate, exogenous EfHTG (extracted from Equisetum or produced in Pichia) exhibited all three activities (CXE, MXE, XET) in competition with each other. Acting on pure cellulose as donor substrate, the CXE action of Pichia-produced EfHTG was up to approximately 300% increased by addition of methanol-boiled Equisetum extracts; there was no similar effect when the same enzyme acted on soluble donors (MLG or xyloglucan). The methanol-stable factor is proposed to be expansin-like, a suggestion supported by observations of pH dependence. Screening numerous low-molecular-weight compounds for hetero-transglucanase inhibition showed that cellobiose was highly effective, inhibiting the abundant endogenous CXE and MXE (but not XET) action in Equisetum internodes. Furthermore, cellobiose retarded Equisetum stem elongation, potentially owing to its effect on hetero-transglucosylation reactions. This work provides insight and tools to further study the role of cellulose hetero-transglucosylation in planta by identifying factors that govern this reaction.  相似文献   
98.
99.
Hybridization has many and varied impacts on the process of speciation. Hybridization may slow or reverse differentiation by allowing gene flow and recombination. It may accelerate speciation via adaptive introgression or cause near‐instantaneous speciation by allopolyploidization. It may have multiple effects at different stages and in different spatial contexts within a single speciation event. We offer a perspective on the context and evolutionary significance of hybridization during speciation, highlighting issues of current interest and debate. In secondary contact zones, it is uncertain if barriers to gene flow will be strengthened or broken down due to recombination and gene flow. Theory and empirical evidence suggest the latter is more likely, except within and around strongly selected genomic regions. Hybridization may contribute to speciation through the formation of new hybrid taxa, whereas introgression of a few loci may promote adaptive divergence and so facilitate speciation. Gene regulatory networks, epigenetic effects and the evolution of selfish genetic material in the genome suggest that the Dobzhansky–Muller model of hybrid incompatibilities requires a broader interpretation. Finally, although the incidence of reinforcement remains uncertain, this and other interactions in areas of sympatry may have knock‐on effects on speciation both within and outside regions of hybridization.  相似文献   
100.
Multiple mutations in different subunits of the tethering complex Conserved Oligomeric Golgi (COG) have been identified as a cause for Congenital Disorders of Glycosylation (CDG) in humans. Yet, the mechanisms by which COG mutations induce the pleiotropic CDG defects have not been fully defined. By detailed analysis of Cog8 deficiency in either HeLa cells or CDG‐derived fibroblasts, we show that Cog8 is required for the assembly of both the COG complex and the Golgi Stx5‐GS28‐Ykt6‐GS15 and Stx6‐Stx16‐Vti1a‐VAMP4 SNARE complexes. The assembly of these SNARE complexes is also impaired in cells derived from a Cog7‐deficient CDG patient. Likewise, the integrity of the COG complex is also impaired in Cog1‐, Cog4‐ and Cog6‐depleted cells. Significantly, deficiency of Cog1, Cog4, Cog6 or Cog8 distinctly influences the production of COG subcomplexes and their Golgi targeting. These results shed light on the structural organization of the COG complex and its subcellular localization, and suggest that its integrity is required for both tethering of transport vesicles to the Golgi apparatus and the assembly of Golgi SNARE complexes. We propose that these two key functions are generally and mechanistically impaired in COG‐associated CDG patients, thereby exerting severe pleiotropic defects.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号