首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   83篇
  免费   1篇
  国内免费   13篇
  2021年   2篇
  2020年   1篇
  2019年   3篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2011年   2篇
  2009年   3篇
  2007年   5篇
  2006年   2篇
  2005年   3篇
  2004年   1篇
  2003年   3篇
  2002年   1篇
  2001年   3篇
  2000年   4篇
  1999年   1篇
  1997年   3篇
  1996年   4篇
  1995年   2篇
  1994年   3篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1990年   4篇
  1988年   2篇
  1987年   3篇
  1986年   1篇
  1985年   7篇
  1984年   7篇
  1983年   3篇
  1982年   4篇
  1981年   5篇
  1980年   3篇
  1979年   4篇
排序方式: 共有97条查询结果,搜索用时 15 毫秒
91.
Responses of various crop species and cultivars to fertilizer application   总被引:4,自引:0,他引:4  
K. Mengel 《Plant and Soil》1983,72(2-3):305-319
Summary Crop response to fertilizer application depends not only on the level of available plant nutrients in the soil but is also related to crop physiology and morphology. For a well balanced nutrition the rate of nutrient supply to the roots must correspond with the rate of nutrient required for growth. Species or cultivars with a high growth rate generally respond more favourably to fertilizer application than those with low growth rates. An analogous relationship holds for the biomass produced per unit soil surface. Thus modern rice and wheat cultivars tolerate a more dense spacing than older ones. Due to the dense stand the yield and particularly the grain yield of the modern varieties may be several times higher than those of older cultivars, and therefore also the nutrient requirement, especially the demand for N and P, is higher for the modern cultivars.Modern cereal cultivars are characterized by a high crop index which means that after flowering a high proportion of grain filling material must be produced by photosynthesis. Assimilation and translocation of photosynthates are favoured by K+. Thus in particular modern cultivars require a high K+ content for optimum grain filling.Nutrient exploitation of soils by plant roots depends on root morphology and root physiology. Grasses generally have much longer roots than dicots. Thus the rate of K+ and phosphate uptake per unit root length is lower for grasses than for dicots. It is for this reason that dicots respond earlier to a K+ and phosphate dressing than grasses.Species living symbiotically with Rhizobium may depress the rhizosphere pH considerably and thus promote the dissolution of phosphate rock.  相似文献   
92.
For the foreseeable future a majority of the population, and almost all the mal- and under-nourished, will continue to be found in the tropics and subtropics. Food security in these parts of the world will have to be met largely from local resources. The productivity of the land is to a large extent determined by the fertlity of the soil, which in turn is mostly determined by its organic matter content and stored nutrients. Soil organic matter is readily lost when organic matter inputs are reduced upon cultivation and more so upon intensification. The concomitant loss of topsoil and possible exposure of subsoil acidity may cause further soil degradation.<br>Plant nutrients to replenish what is yearly taken from the soil to meet the demands for food and fibre amount to 230 million tonnes (Mt). Current fertilizer consumption stands at about 130 Mt of N, P2O5,and K2O, supplemented by an estimated 90 Mt of N from biological nitrogen fixation worldwide. Although 80 per cent of the population lives in the developing world, only half the world''s fertilizer is consumed there. Yet, as much as 50% of the increase in agricultural productivity in the developing world is due to the adoption of fertilizers. World population growth will cause a doubling in these nutrients requirements for the developing world by 2020, which, in the likely case of inadequate production, will need to be met from soil reserves. Because expansion of the cultivable land area is reaching its limits, the reliance on nutrient inputs and their efficient use is bound to grow.<br>With current urban expansion, nutrients in harvested products are increasingly lost from the rural environment as a whole. Estimates of soil nutrient depletion rates for sub-Saharan Africa (SSA) are alarmingly high. The situation may be more favourable in Latin America and Asia where fertilizer inputs are tenfold those of SSA. Closing the nutrient cycle at a community level in rural areas may be tedious; on an inter-regional level it is associated with considerable costs of collection, detoxification and transportation to the farms. Yet, at the rate at which some of the non-renewable resources such as phosphorus and potassium are being exploited, recycling of these nutrients will soon be required. <br>  相似文献   
93.
Environmental perturbations can alter the composition of plant communities, either directly, by altering growth of some species more than others, or indirectly, by altering the strength of interspecific interactions among species. The relative importance of direct and indirect effects is not at all well known. We used an experimental approach to quantifying direct and indirect effects of fungicide on the composition of a plant community. To separate the direct and indirect impacts of fungicide we grew plant species in monoculture and mixed communities, and with and without the systemic fungicide benomyl. We predicted that direct effects of fungicide would be important at low but not high nutrient availability, while indirect effects would be more important at high nutrient availability. After 3 years there was little impact of fungicide on arbuscular mycorrhizal fungal colonization, and on soil microbial community composition assessed as the relative abundance of different phospholipid fatty acids. Like fertilizer, fungicide increased plant biomass. However, in contrast to fertilizer, this did not result in a decline in species evenness. Although not significant, the direct effects of fungicide tended to oppose the indirect effects of both fungicide and interspecific interactions on plant community composition. Experiments relying on fungicide treatments must be interpreted extremely cautiously, because the impact of fungicide is potentially the integrated response of plants to multiple factors, including arbuscular mycorrhizal fungi, pathogenic and saprophytic fungi, and nutrient inputs.  相似文献   
94.
K. L. Sahrawat 《Plant and Soil》1980,57(2-3):335-352
Summary A review is made of the recent work to assess the prospects of regulating urea hydrolysis and nitrification processes in soils by employing chemicals that can retard urea hydrolysis and nitrification. The possible benefits from control of nitrogen transformations in terms of conserving and enhancing fertilizer nitrogen efficiency for crop production and the problems associated with their use with regard to N metabolism of plants have also been discussed with examples. Prospects of using cheap and effective indigenous materials and chemicals for control of urea hydrolysis and nitrification under specific soil situations appear eminent in improving the fertilizer nitrogen efficiency. Urease inhibitors may be helpful in reducing problems associated with ammonia volatilization if this is not offset by leaching of urea. On the other hand retardation of nitrification appears useful in reducing losses that accompany nitrification due to leaching and denitrification, and with the plants that metabolize equally well with relatively higher amounts of NH4–N may be more effective in improving the utilization of fertilizer N under these situations.  相似文献   
95.
Inorganic polyphosphates (PolyP) are linear polymers containing a few to several hundred orthophosphate residues linked by energy-rich phosphoanhydride bonds. PolyPs are widely used as reagents in water treatment, fertilizers, flame retardants and food additives due to its unique properties, inexpensiveness, nontoxicity and biodegradability. The practice of enhanced biological phosphorus removal (EBPR), based on PolyP accumulation by sludge bacteria, is an accepted and low-cost strategy for controlling eutrophication. PolyPs are present in the cells of all living organisms, from bacteria to mammals. They perform numerous functions in the cells: phosphate and energy storage, sequestration and storage of cations, formation of membrane channels, cell envelope formation and function, gene activity control, regulation of enzyme activities, stress response and stationary phase adaptation. PolyPs participate in bone tissue development and in the blood coagulation cascade and are promising candidates in therapy for bone and blood diseases. They may also have application in creating novel bone substitute materials, serving as carriers for prolonged action drugs, and acting as a phosphodonor in enzymatic synthesis of biologically active compounds. The importance of polyphosphate kinases in the virulence of pathogens forms a basis for the development of new antibiotics. Further study of PolyP biochemistry and cell biology can be applied to medicine, environmental protection and agriculture.  相似文献   
96.
Blake  L.  Mercik  S.  Koerschens  M.  Goulding  K.W.T.  Stempen  S.  Weigel  A.  Poulton  P.R.  Powlson  D.S. 《Plant and Soil》1999,216(1-2):1-14
This study quantitatively assesses the fate of K derived from mineral fertilizers and organic manures and the effective K balance in three long-term field experiments at Rothamsted (UK), Bad Lauchstaedt (Germany) and Skierniewice (Poland). Plant availability, uptake and the overall utilization of K over the last 30 years (1965–1996) are discussed and related to soil K Availability Indices determined by the standard methods used in each of the three countries. In addition, to provide a standard comparison of the three sites, Exchangeable K (1 M NH4OAc) and Non-exchangeable K (K extracted by boiling with 1 M HNO3) were measured on one recent (1995) set of soil samples. Plant availability and utilization of K was partly related to clay content, but more closely to the cation exchange surfaces associated with both mineral and organic constituents and also, at Rothamsted, to the capacity of clay minerals to fix K. The recovery rate of K from mineral fertilizer by crops did not exceed 62%. Fertilizers were least effective in the most strongly K fixing soil at Rothamsted (44% maximum) and most effective in the soil with the highest cation exchange capacity (CEC) at Bad Lauchstaedt (62%), where the greater quantity of exchange sites appear to be associated with humic material. Recoveries of K from farmyard manure (FYM) varied from 22–117% (values of >100% indicating subsoil uptake or the release of reserves). Deficiencies of N, P and Mg in some treatments decreased the effectiveness of applied K and may have caused increased leaching of K from the plough layer. FYM was generally more effective than mineral fertilizer where mineral N and P were not applied because these nutrients were effectively supplied in the manure. But the effectiveness of mineral K fertilizer decreased when applied in combination with FYM because FYM was the preferred source of K. Where FYM application increased the CEC of soils, this also improved K utilization but only where K was not extensively leached or fixed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
97.
提高稻田氮素生态效益的施肥技术   总被引:1,自引:1,他引:0  
田间试验结果表明,在有水层下把氮肥撒施在土表的“习惯施肥法”易引起氨挥发和硝化-反硝化的N素损失,基肥“全层混施”或“犁沟深施”、追肥“以水带N”的“改进施肥法”可以避免“习惯施肥法”的上述缺点,提高N肥利用率20—30%,提高N肥增产效率25%左右。该施肥法可减少大气和水体环境的污染,且有益于人类社会和增加土壤N素肥力,是一项提高N素生态效益的施肥技术。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号