首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1492篇
  免费   162篇
  国内免费   57篇
  2023年   20篇
  2022年   17篇
  2021年   36篇
  2020年   61篇
  2019年   62篇
  2018年   54篇
  2017年   64篇
  2016年   51篇
  2015年   59篇
  2014年   58篇
  2013年   69篇
  2012年   44篇
  2011年   41篇
  2010年   50篇
  2009年   60篇
  2008年   71篇
  2007年   74篇
  2006年   53篇
  2005年   57篇
  2004年   52篇
  2003年   46篇
  2002年   39篇
  2001年   30篇
  2000年   33篇
  1999年   34篇
  1998年   26篇
  1997年   31篇
  1996年   23篇
  1995年   31篇
  1994年   27篇
  1993年   28篇
  1992年   22篇
  1991年   26篇
  1990年   23篇
  1989年   32篇
  1988年   18篇
  1987年   18篇
  1986年   20篇
  1985年   26篇
  1984年   23篇
  1983年   18篇
  1982年   28篇
  1981年   11篇
  1980年   13篇
  1979年   9篇
  1978年   7篇
  1977年   4篇
  1976年   6篇
  1973年   4篇
  1972年   1篇
排序方式: 共有1711条查询结果,搜索用时 15 毫秒
81.
Rien Aerts 《Polar Biology》2009,32(2):207-214
Global warming will lead to increased nitrogen supply in tundra ecosystems. How increased N supply affected leaf production, leaf turnover and dead leaf N input into the soil of Empetrum nigrum and Andromeda polifolia (evergreens), Eriophorum vaginatum (graminoid) and Betula nana (deciduous) in a sub-arctic tundra in northern Sweden between 2003 and 2007 was experimentally investigated. There was considerable interspecific variation in the response of leaf production to N addition, varying from negative, no response to a positive response. Nitrogen addition effects on leaf turnover also showed considerable variation among species, varying from no effect to increased leaf turnover (up to 27% in Eriophorum). Nitrogen addition resulted in a four to fivefold increase in N content in the dead leaves of both evergreens and a 65% increase in Eriophorum. Surprisingly, there was no increase in Betula. The response of dead leaf P contents to N addition was rather species specific. There was no response in Empetrum, whereas there were significant increases in Andromeda (+214%) and Eriophorum (+32%), and a decrease of 47% in Betula. As an overall result of the changes in leaf production, leaf turnover and dead leaf N and P contents, nitrogen addition increased in all species except Betula the amount of N and, for Andromeda and Eriophorum the amount of P transferred to the soil due to leaf litter inputs. However, the way in which this was achieved differed substantially among species due to interspecific differences in the response of the component processes (leaf production, leaf turnover, dead leaf nutrient content).  相似文献   
82.
In many temperate zone songbird species males only produce song during the breeding season, when plasma testosterone (T) levels are high. Males of some species sing throughout the year, even when T levels are low, indicating a dissociation between high T levels and song rate. Given that few studies have taken advantage of these species, we compare here song traits expressed under high versus low T concentrations and we study the role of testosterone in adult song learning in the European Starling, an open-ended learner in which repertoire size dramatically increases with age. We performed a detailed comparison of song complexity and song rate between fall and spring in 6-year-old intact male European starlings. In parallel, we investigated whether potential seasonal changes were regulated by the gonadally induced increase in plasma T, by comparing seasonal changes in intact and castrated males of the same age (castrated as juveniles during their first fall) and by subsequently experimentally elevating T in half of the castrated males. While song rate and stereotypy did not differ between intacts and castrates or between fall and spring, both groups increased their average song bout length from fall to spring, but only intact males increased their repertoire size, indicating that effects of seasonal T changes differ between song traits. Intact males overall displayed a larger song repertoire and a longer bout length than the castrates, and implantation with T caused a turnover in repertoire composition in castrates. However, as the castrates had never experienced high T levels and yet displayed a markedly higher repertoire size than that of typical yearling males, this suggests that the progressive increase of song repertoire with age in male starlings is not dependent on gonadal T, although it may be T-enhanced.  相似文献   
83.
格氏栲天然林与人工林细根生物量、季节动态及净生产力   总被引:73,自引:14,他引:59  
通过对福建三明格氏栲天然林及在其采伐迹地上营造的33年生格氏栲人工林和杉木人工林细根分布、季节动态与净生产力进行的为期3a(1999~2001)的研究,结果表明,格氏栲天然林、格氏栲和杉木人工林活细根生物量分别为4.944t/hm2、3.198t/hm2和1.485t/hm2,死细根生物量分别为3.563t/hm2、2.749t/hm2和1.287t/hm2;死细根生物量占总细根生物量的比例分别为41.9%、46.2%和46.4%;<0.5mm细根生物量占总细根生物量的比例分别为31.2%、29.4%和69.9%。3种林分活细根生物量和死细根生物量季节间差异显著(P<0.05),但年份间差异则不显著(P>0.05);活细根生物量最大值均出现在3月份,最小值一般出现在5~7月份或11~翌年1月份间。0~10cm表土层格氏栲天然林活细根生物量高达295.65g/m2,分别是格氏栲人工林和杉木人工林的2.4倍和8.1倍;该层格氏栲天然林活细根生物量占全部活细根生物量的59.8%,均高于格氏栲人工林(39.07%)和杉木人工林(24.51%)。格氏栲天然林、格氏栲人工林和杉木人工林细根分解1a后的干重损失率分别为68.34%~80.13%、63.51%~77.95%和47.69%~60.78%;年均分解量分别为8.747、5.143和2.503t/hm2;死亡量分别为8.632、5.148和2.492t/hm2;年均净生产量分别为8.797、5.425和2.513t/hm2,年周转速率分别为1.78、1  相似文献   
84.
With the advent of molecular methods, it became clear that microbial biodiversity had been vastly underestimated. Since then, species abundance patterns were determined for several environments, but temporal changes in species composition were not studied to the same level of resolution. Using massively parallel sequencing on the 454 GS FLX platform we identified a highly dynamic turnover of the seasonal abundance of protists in the Austrian lake Fuschlsee. We show that seasonal abundance patterns of protists closely match their biogeographic distribution. The stable predominance of few highly abundant taxa, which previously led to the suggestion of a low global protist species richness, is contrasted by a highly dynamic turnover of rare species. We suggest that differential seasonality of rare and abundant protist taxa explains the—so far—conflicting evidence in the ‘everything is everywhere’ dispute. Consequently temporal sampling is basic for adequate diversity and species richness estimates.  相似文献   
85.
86.
Radiocarbon (14C) provides a measure of the mean age of carbon (C) in roots, or the time elapsed since the C making up root tissues was fixed from the atmosphere. Radiocarbon signatures of live and dead fine (<2 mm diameter) roots in two mature Amazon tropical forests are consistent with average ages of 4–11 years (ranging from <1 to >40 years). Measurements of 14C in the structural tissues of roots known to have grown during 2002 demonstrate that new roots are constructed from recent (<2‐year‐old) photosynthetic products. High Δ14C values in live roots most likely indicate the mean lifetime of the root rather than the isotopic signature of inherited C or C taken up from the soil. Estimates of the mean residence time of C in forest fine roots (inventory divided by loss rate) are substantially shorter (1–3 years) than the age of standing fine root C stocks obtained from radiocarbon (4–11 years). By assuming positively skewed distributions for root ages, we can effectively decouple the mean age of C in live fine roots (measured using 14C) from the rate of C flow through the live root pool, and resolve these apparently disparate estimates of root C dynamics. Explaining the 14C values in soil pore space CO2, in addition, requires that a portion of the decomposing roots be cycled through soil organic matter pools with decadal turnover time.  相似文献   
87.
An auxin autotrophic Arachis hypogea cell culture was sensitive to stress treatments leading to water loss whereas the growth of its auxin-supplemented counterpart was unaffected under similar conditions. Here we show that an hour of transient auxin treatment in the post stress period was sufficient for restoring the auxin autotrophic growth potential of the stress driven quiescent Arachis cells. Qualitative proteome analysis revealed protein turnover to have a role in mediating auxin-originated signals in these cells. In consonance, MG132 a cell permeable inhibitor of the ubiquitin mediated protein turnover completely inhibited the auxin dependent growth restoration of the stressed Arachis cells. Thus protein turnover is a necessary downstream event in exogenous auxin mediated stress tolerance in Arachis cells.  相似文献   
88.
We have investigated stem turnover strategy for Lindera umbellata, an understory shrub that sprouts from its rootstock under natural conditions to replace constituent stems, on the basis of the hypothesis that the multiple-stemmed form of woody species is an adaptation enabling efficient reproduction in high-stress environments. We tested the hypothesis that the timing of stem replacement maximizes sexual reproduction for the shrub. We developed a model for the time of optimum replacement of a stem by a daughter stem which maximizes the sexual reproduction of a shrub and tested the model using L. umbellata growing in the field. From the model, the optimum time of replacement of a stem with a daughter stem is when cumulative sexual reproduction per unit time for the stem is maximum. In practice, this will be the last age (t opt) at which annual sexual reproduction in a stem can potentially exceed cumulative sexual reproduction per unit time for the stem. Half of the stems died at almost t opt and had sexually mature daughter stems at that time. Other stems, however, died at times more remote from t opt when daughter stems were sexually immature. It is thought that normal replacement of the latter stems was prevented by accidents such as breakage. We conclude that clumps of L. umbellata achieve efficient sexual reproduction by stem replacement at the optimum time, although accidents can, to some extent, determine when the stem actually dies.  相似文献   
89.
90.
The present study contributes to theory and practice through the development of a model of shift‐work tolerance with the potential to indicate interventions that reduce nurses' intention toward turnover and increase job satisfaction in hospital‐based settings. Survey data from 1257 nurses were used to conduct structural equation modeling that examine the direct and indirect effects of supervisor and colleague support, team identity, team climate, and control over working environment on time‐based work/life conflict, psychological well‐being, physical symptoms, job satisfaction, and turnover intention. The analysis of the proposed model revealed a good fit The chi‐square difference test was non‐significant (χ2(26)=338.56), the fit indices were high (CFI=.923, NFI=.918, and NNFI=.868), the distribution of residuals was symmetric and approached zero, the average standardized residual was low (AASR=.04), and the standardized RMR was. 072. In terms of the predictor variable, the final model explained 48% of the variance in turnover intention. The data revealed considerable evidence of both direct effects on adjustment and complex indirect links between levels of adjustment and work‐related social support, team identity, team climate, and control. Nurses with high supervisor and coworker support experienced more positive team climates, identified more strongly with their team, and increased their perceptions of control over their work environment. This in turn lowered their appraisals of their time‐based work/life conflict, which consequently increased their psychological well‐being and job satisfaction and reduced their physical health symptoms and turnover intention. The type of shift schedule worked by the nurses influenced levels of turnover intention, control over work environment, time‐based work/life conflict, and physical symptoms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号