首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2804篇
  免费   523篇
  国内免费   213篇
  2024年   4篇
  2023年   74篇
  2022年   57篇
  2021年   161篇
  2020年   209篇
  2019年   310篇
  2018年   218篇
  2017年   152篇
  2016年   151篇
  2015年   137篇
  2014年   179篇
  2013年   223篇
  2012年   122篇
  2011年   140篇
  2010年   125篇
  2009年   146篇
  2008年   149篇
  2007年   140篇
  2006年   165篇
  2005年   122篇
  2004年   116篇
  2003年   87篇
  2002年   56篇
  2001年   56篇
  2000年   48篇
  1999年   26篇
  1998年   32篇
  1997年   18篇
  1996年   13篇
  1995年   12篇
  1994年   13篇
  1993年   11篇
  1992年   5篇
  1991年   5篇
  1990年   9篇
  1989年   5篇
  1988年   6篇
  1987年   10篇
  1986年   1篇
  1985年   8篇
  1984年   4篇
  1983年   3篇
  1982年   3篇
  1981年   3篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1974年   2篇
排序方式: 共有3540条查询结果,搜索用时 15 毫秒
81.
We studied the distribution and spread of the invasive social wasp Vespula germanica in Argentina, focusing on the contribution of queen dispersal to territorial expansion. Vespula germanica is native to Eurasia and has invaded several regions of the world, including Southern Argentina. Flight potential of field‐collected queens was measured using flight mills. Also, by means of an extensive survey we estimated the rate of spread by analysing the relationship between years since arrival and distance from the introduction locality. The mean distance flown by wasp queens in flight mills was 404.7 ± 140.8 m (mean ± SE, n = 59), while the rate of spread of V. germanica was estimated at 37.2 ± 2.1 km year?1 (mean ± SE, n = 67), although faster towards the south. The observed spread rate of V. germanica wasps in Argentina confirms the invasive potential shown by several Hymenoptera species worldwide. Still, a stratified geographical expansion pattern does not match observed queen dispersal abilities, suggesting that human‐aided transport of hibernating queens is the central driver of the current distribution of these wasps. We suggest that despite several life‐history traits known for social insects that contribute to successful invasion, wasp spread must still rely strongly on human mediated pathways. This observation sheds light on those factors that are crucial for managing invasions of this and related pestiferous wasps.  相似文献   
82.
83.
Deserts shrubs are well known to facilitate vegetation aggregation, mostly through seed trapping, and stress amelioration during and after plant establishment. Because vegetation aggregation effects are a by‐product of shrub presence, beneficiary species may not only be native, but also exotic. However, despite the high risk that exotic invasive species pose to ecosystem services, little is known of the role of desert shrubs on plant invasions. We assessed the influence of two shrub species on the non‐dormant soil seed bank (i.e. the number of seeds that readily germinate with sufficient water availability) of an invasive annual grass (Schismus barbatus) and of coexisting native species in a central‐northern Monte Desert (Argentina). Soil samples were collected beneath the canopies of two dominant shrub species (Bulnesia retama and Larrea divaricata) and in open spaces (i.e. intercanopies) in May 2001. Overall, the density of germinated seedlings of Schismus and that of the native species were negatively associated across microsite types. Schismus density was similar to that of all native species pooled together (mostly annuals), and was highest in Larrea samples (with no significant differences between Bulnesia and intercanopies). On the contrary, the density of all native species pooled together was highest in Bulnesia samples. Our results suggest that shrubs may contribute to plant invasions in our study system but, most importantly, they further illustrate that this influence can be species specific. Further research is needed to assess the relative importance of in situ seed production (and survival) and seed redistribution on soil seed bank spatial patterns.  相似文献   
84.
Background: Colorectal carcinogenesis is believed to be a multi-stage process that originates with a localized adenoma, which linearly progresses to an intra-mucosal carcinoma, to an invasive lesion, and finally to metastatic cancer. This progression model is supported by tissue culture and animal model studies, but it is difficult to reconcile with several well-established observations, principally among these are that up to 25% of early stage (Stage I/II), node-negative colorectal cancer (CRC) develop distant metastasis, and that circulating CRC cells are undetectable in peripheral blood samples of up to 50% of patients with confirmed metastasis, but more than 30% of patients with no detectable metastasis exhibit such cells. The mechanism responsible for this diverse behavior is unknown, and there are no effective means to identify patients with pending, or who are at high risk for, developing metastatic CRC.Novel findings: Our previous studies of human breast and prostate cancer have shown that cancer invasion arises from the convergence of a tissue injury, the innate immune response to that injury, and the presence of tumor stem cells within tumor capsules at the site of the injury. Focal degeneration of a capsule due to age or disease attracts lymphocyte infiltration that degrades the degenerating capsules resulting in the formation of a focal disruption in the capsule, which selectively favors proliferating or “budding” of the underlying tumor stem cells. Our recent studies suggest that lymphocyte infiltration also triggers metastasis by disrupting the intercellular junctions and surface adhesion molecules within the proliferating cell buds causing their dissociation. Then, lymphocytes and tumor cells are conjoined through membrane fusion to form tumor-lymphocyte chimeras (TLCs) that allows the tumor stem cell to avail itself of the lymphocyte''s natural ability to migrate and breach cell barriers in order to intravasate and to travel to distant organs. Our most recent studies of human CRC have detected nearly identical focal capsule disruptions, lymphocyte infiltration, budding cells, and the formation of TLCs. Our studies have further shown that age- and type-matched node-positive and -negative CRC have a significantly different morphological and immunohistochemical profile and that the majority of lymphatic ducts with disseminated cells are located within the mucosa adjacent to morphologically normal appearing epithelial structures that express a stem cell-related marker.New hypothesis: Based on these findings and the growth patterns of budding cells revealed by double immunohistochemistry, we further hypothesize that metastatic spread is an early event of carcinogenesis and that budding cells overlying focal capsule disruptions represent invasion- and metastasis-initiating cells that follow one of four pathways to progress: (1) to undergo extensive in situ proliferation leading to the formation of tumor nests that subsequently invade the submucosa, (2) to migrate with associated lymphocytes functioning as “seeds” to grow in new sites, (3) to migrate and intravasate into pre-existing vascular structures by forming TLCs, or (4) to intravasate into vascular structures that are generated by the budding cells themselves. We also propose that only node-positive cases harbor stem cells with the potential for multi-lineage differentiation and unique surface markers that permit intravasation.  相似文献   
85.
86.
The advent of techniques to study palmitoylation on a whole proteome scale has revealed that it is an important reversible modification that plays a role in regulating multiple biological processes. Palmitoylation can control the affinity of a protein for lipid membranes, which allows it to impact protein trafficking, stability, folding, signalling and interactions. The publication of the palmitome of the schizont stage of Plasmodium falciparum implicated a role for palmitoylation in host cell invasion, protein export and organelle biogenesis. However, nothing is known so far about the repertoire of protein S‐acyl transferases (PATs) that catalyse this modification in Apicomplexa. We undertook a comprehensive analysis of the repertoire of Asp‐His‐His‐Cys cysteine‐rich domain (DHHC‐CRD) PAT family in Toxoplasma gondii and Plasmodium berghei by assessing their localization and essentiality. Unlike functional redundancies reported in other eukaryotes, some apicomplexan‐specific DHHCs are essential for parasite growth, and several are targeted to organelles unique to this phylum. Of particular interest is DHHC7, which localizes to rhoptry organelles in all parasites tested, including the major human pathogen P. falciparum. TgDHHC7 interferes with the localization of the rhoptry palmitoylated protein TgARO and affects the apical positioning of the rhoptry organelles. This PAT has a major impact on T. gondii host cell invasion, but not on the parasite's ability to egress.  相似文献   
87.
Disseminated malignancy is responsible for the vast majority of cancer-related deaths. During this process, circulating tumor cells (CTC) are generated, spread from the primary tumor, colonize distant organs and lead to overt metastatic disease. CTC are essential for establishing metastasis; however, they are not sufficient as this process is highly inefficient and most will fail to grow in target sites. Several CTC die during migration while others remain dormant for several years and very few grow into macrometastases. CTC have been well documented in the bloodstream of cancer patients; however, the clinical relevance of this detection is still the subject of controversies and their biology is poorly understood. Indeed, available markers fail to distinguish between subgroups of CTC, and several current methods lack sensitivity, specificity or reproducibility in CTC characterization and detection. The advent of more precise technologies is renewing the interest in CTC biology. We will review herein recent findings on CTC biology, on the role of host–tumor interactions in CTC shedding and implantation, available methods of CTC detection and future perspectives for the molecular characterization of the CTC subset(s) responsible for the development of metastasis. Ultimately, understanding CTC biology and host–tumor ‘complementarities’ will help define metastasis-related biomarkers providing formidable and tailored novel therapeutic targets.  相似文献   
88.
胃癌患者转移淋巴结中胃泌素基因的表达量是原发胃癌组织的42倍,推测胃泌素可能与胃癌转移密切相关. 本文通过构建含胃泌素基因的真核表达载体,成功获得过表达胃泌素的稳转胃癌细胞株AGS和SGC-7901, 并用MTT、细胞伤愈实验、Transwell 小室实验及ELISA检测过表达胃泌素对细胞迁移、侵袭及转移相关蛋白基质金属蛋白酶2(MMP-2)分泌能力的影响. 结果显示,过表达胃泌素稳转细胞的相对增殖率、 迁移入细胞致伤区的相对距离比对照组高,迁移和侵袭到Transwell下室面的细胞, 以及培养液中每mg蛋白质的MMP-2浓度也高于对照组的细胞. 结果提示,胃泌素通过促进胃癌细胞分泌MMP-2来增强细胞的迁移和侵袭能力. 该研究对揭示胃癌转移的分子机制具有重要意义.  相似文献   
89.
Evolutionary dynamics of integrative traits such as phenology are predicted to be critically important to range expansion and invasion success, yet there are few empirical examples of such phenomena. In this study, we used multiple common gardens to examine the evolutionary significance of latitudinal variation in phenology of a widespread invasive species, the Asian short‐day flowering annual grass Microstegium vimineum. In environmentally controlled growth chambers, we grew plants from seeds collected from multiple latitudes across the species' invasive range. Flowering time and biomass were both strongly correlated with the latitude of population origin such that populations collected from more northern latitudes flowered significantly earlier and at lower biomass than populations from southern locations. We suggest that this pattern may be the result of rapid adaptive evolution of phenology over a period of less than one hundred years and that such changes have likely promoted the northward range expansion of this species. We note that possible barriers to gene flow, including bottlenecks and inbreeding, have apparently not forestalled evolutionary processes for this plant. Furthermore, we hypothesize that evolution of phenology may be a widespread and potentially essential process during range expansion for many invasive plant species.  相似文献   
90.
Epidermal growth factor (EGF) is a well-known growth factor that induces cancer cell migration and invasion. Previous studies have shown that SMAD ubiquitination regulatory factor 1 (SMURF1), an E3 ubiquitin ligase, regulates cell motility by inducing RhoA degradation. Therefore, we examined the role of SMURF1 in EGF-induced cell migration and invasion using MDA-MB-231 cells, a human breast cancer cell line. EGF increased SMURF1 expression at both the mRNA and protein levels. All ErbB family members were expressed in MDA-MB-231 cells and receptor tyrosine kinase inhibitors specific for the EGF receptor (EGFR) or ErbB2 blocked the EGF-mediated induction of SMURF1 expression. Within the signaling pathways examined, ERK1/2 and protein kinase C activity were required for EGF-induced SMURF1 expression. The overexpression of constitutively active MEK1 increased the SMURF1 to levels similar to those induced by EGF. SMURF1 induction by EGF treatment or by the overexpression of MEK1 or SMURF1 resulted in enhanced cell migration and invasion, whereas SMURF1 knockdown suppressed EGF- or MEK1-induced cell migration and invasion. EGF treatment or SMURF1 overexpression decreased the endogenous RhoA protein levels. The overexpression of constitutively active RhoA prevented EGF- or SMURF1-induced cell migration and invasion. These results suggest that EGFinduced SMURF1 plays a role in breast cancer cell migration and invasion through the downregulation of RhoA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号