首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   158篇
  免费   6篇
  国内免费   22篇
  2022年   2篇
  2021年   2篇
  2020年   1篇
  2019年   3篇
  2018年   5篇
  2017年   5篇
  2016年   5篇
  2015年   4篇
  2014年   7篇
  2013年   6篇
  2012年   7篇
  2011年   20篇
  2010年   6篇
  2009年   18篇
  2008年   14篇
  2007年   16篇
  2006年   18篇
  2005年   9篇
  2004年   12篇
  2003年   10篇
  2002年   7篇
  2001年   2篇
  2000年   1篇
  1999年   3篇
  1998年   2篇
  1996年   1篇
排序方式: 共有186条查询结果,搜索用时 62 毫秒
81.
Metal ion binding domains are found in proteins that mediate transport, buffering or detoxification of metal ions. The objective of the study is to design and analyze metal binding motifs against the genes involved in phytoremediation. This is being done on the basis of certain pre-requisite amino-acid residues known to bind metal ions/metal complexes in medicinal and aromatic plants (MAP''s). Earlier work on MAP''s have shown that heavy metals accumulated by aromatic and medicinal plants do not appear in the essential oil and that some of these species are able to grow in metal contaminated sites. A pattern search against the UniProtKB/Swiss-Prot and UniProtKB/TrEMBL databases yielded true positives in each case showing the high specificity of the motifs designed for the ions of nickel, lead, molybdenum, manganese, cadmium, zinc, iron, cobalt and xenobiotic compounds. Motifs were also studied against PDB structures. Results of the study suggested the presence of binding sites on the surface of protein molecules involved. PDB structures of proteins were finally predicted for the binding sites functionality in their respective phytoremediation usage. This was further validated through CASTp server to study its physico-chemical properties. Bioinformatics implications would help in designing strategy for developing transgenic plants with increased metal binding capacity. These metal binding factors can be used to restrict metal update by plants. This helps in reducing the possibility of metal movement into the food chain.  相似文献   
82.
Sesbania grandiflora (L.) pers (Fabaceae) and Arabidopsis thaliana (L.) (Brassicaceae) were genetically engineered to constitutively express the rabbit cytochrome p450 2E1 enzyme aiming at increasing their activity toward trichloroethylene (TCE) and dichlorodiphenyltrichloroethane (DDT) removal Successful generation of Sesbania and Arabidopsis transgenic plants was verified using p450 2E1 specific PCR and confirmed by western blot analysis. Gas chromatography (GC) analysis revealed that small cuttings of Sesbania and third generation (F3) Arabidopsis transgenic plants exposed to TCE and DDT in small hydroponics' vessels accumulated more TCE and DDT compared to plants transformed with the empty vector. Furthermore, both transgenic plants were more effective in breaking down TCE and DDT with a 2-fold increase in TCE metabolism. Two independent Arabidopsis lines showed that DDT was metabolized about 4-fold higher than that detected in non transformed plants. Similarly, S. grandiflora cuttings removed 51 to 90% of the added DDT compared with only 3% removal in controls transformed with the null vector. Notably, stability of rabbit cytochrome p450 2E1 was confirmed using third generation Arabidopsis plants that displayed higher potential for the removal of two important pollutants, TCE and DDT compared with the controls.  相似文献   
83.
A field experiment was conducted with paddy (Oryza sativa L.) irrigated with different concentrations (Control, 2.5, 5, 10, 25, 50, 75, 100 and 200 mg/l) of chromium. The changes in growth, yield, nutrient content and chromium accumulation in the paddy are reported. The growth of shoot, root, total leaf area, fresh weight, dry weight and yield of the paddy gradually decreased with increasing Cr concentration. Similarly, the uptake of macronutrients (N, P, K) and micronutrients (Mn, Cu, Zn, Fe) were also gradually decreased. However, the chromium accumulation gradually increased with the increasing concentrations of chromium. Among the aquatic plants tested, Eicchornia crassipes showed better performance in accumulating higher amount of chromium. Similarly, certain grasses and weeds such as Cyperus rotundus, Cyperus kylinga, Marselia quadrifolia and Ludwigia parvifloria were used for the phytoremediation of chromium polluted soil. Among them, Cyperus rotundus accumulated higher amount of chromium than the other plants tested.  相似文献   
84.
Bouzid Nedjimi  Youcef Daoud 《Flora》2009,204(4):316-324
Atriplex halimus subsp. schweinfurthii is a newly found cadmium (Cd)-hyperaccumulator, but there have been no detailed studies on its physiological responses when Cd is hyperaccumulated. A. halimus was grown in hydroponic conditions to investigate the effect of cadmium chloride (CdCl2) on growth, water status, leaf chlorophyll concentration, proline and Cd accumulation. Treatments were prepared by adding 0, 50, 100, 200 and 400 μM CdCl2 to the nutrient medium. Plant growth was significantly affected at high-Cd treatments. Increased CdCl2 decreased chlorophyll concentration, transpiration and root hydraulic conductivity (L0). Hence water flux had only a little effect on the uptake of Cd in A. halimus seedlings. In contrast, proline content increased with increasing CdCl2 concentration. Plants accumulated substantial amount of Cd in different plant parts (shoot and root). Most of the Cd taken up was retained in roots (606.51 μg g−1DW after 15 d at 400 μM CdCl2). The addition of Cd in the culture medium affected calcium (Ca) and potassium (K) nutrition in both shoot and root. A. halimus provides a new plant resource for exploring the mechanism of Cd hyperaccumulation and has potential for use in the phytostabilization of Cd-contaminated salt soils.  相似文献   
85.
The operation of tidal flow was studied using a pilot‐scale system treating high strength piggery wastewater. Located on a farm in Staffordshire, UK, the system consisted of five wetland treatment stages vegetated with common reeds of Phragmites australis. Wastewater samples were collected from the inlet and outlet of each stage and analyzed for BOD5, COD, NH4‐N, NO3‐N, NO2‐N, SS, PO4‐P and pH. Average hydraulic and organic loadings on the system were 0.12 m3/m2 d and 240 g BOD/m2 d, respectively, which is considerably higher than the typical loadings on conventional subsurface flow systems. On average, BOD5 and COD were reduced by 82 % and 80 % from initial concentrations of 2000 mg/L and 2750 mg/L, respectively, across the whole system. The first‐order kinetics constant for BOD5 removal (KBOD in m/d) in this tidal flow system is approximately 2.5 times the rate constant obtainable in a typical horizontal flow system, demonstrating a more efficient removal of organic matter in tidal flow wetlands. The overall efficiency of the system was found to increase with time before stabilizing towards the end of a start‐up period. Straight‐line correlations were established between the loading and removal of BOD5 and COD. Contributions by individual stages to the overall treatment were analyzed. SEM images of wetland media demonstrated the formation of biofilms and microbial activities inside the matrices of the wetland system, which accounted for the degradations of organic pollutants.  相似文献   
86.
A free water surface wetland was built in 2002 to treat wastewater from a tool factory containing metals (Cr, Ni, Zn and Fe), nutrients and organic matter. Until 2006, the last reported period, the wetland retained metals and stored them primarily in the bottom sediment and in the biomass of macrophytes secondarily. The aim of this work was to study metal retention and distribution in the sediment of a constructed wetland for industrial wastewater treatment. Total concentrations and fractions (exchangeable, carbonate-bound, Fe-Mn oxides-bound, organic matter-bound and residual) of metals in sediment were analyzed in this treatment wetland, in order to estimate the fate of metals over time. Metal concentrations were significantly higher in the inlet than in the outlet sediment; concentrations in the latter remained without significant differences throughout the testing period. Metal concentrations and redox potential decreased with depth within the sediment. The lowest metal concentrations and pH and the highest redox values were attained in spring, in agreement with the period of maximum macrophyte growth. Ni and Zn were mainly stored associated with the carbonate fraction; Cr was mainly associated with the Fe-Mn oxides fraction, while Fe was mainly associated with the residual fraction, probably as pyrite. The incoming wastewater composition containing high pH, carbonate, calcium and Fe concentrations favored the observed association in the surface sediment. It would be expected that sediment will continue retaining metals in fractions that will not release them into the water while the chemical and environmental conditions remain unchanged.  相似文献   
87.
为探讨金毛狗[Cibotium barometz(L.) J. Sm.]对重金属的富集能力,在广东省选取6个样点(南岭、南昆山、白云山、大岭山、梧桐山、西樵山)采集金毛狗的叶片、根状茎和根际土壤,采用ICP-MS测定9种重金属元素(Cr、Mn、Ni、Cu、Zn、As、Cd、Hg、Pb)的含量。结果表明,样地土壤已受到不同程度的重金属污染,土壤中Cd和Hg含量均高于广东省土壤背景值,分别为背景值的1.61~4.82倍和4.74~11.79倍。西樵山土壤中Cd含量最大,南岭土壤中Hg含量最大。在9种元素中,金毛狗对Hg的转运系数最高,达4.8,对Cd的富集系数最高,达2.2,Cu和Cd元素的转运系数和富集系数均大于1。这说明金毛狗对重金属元素的富集能力较弱而转运能力较强。  相似文献   
88.
Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation   总被引:22,自引:0,他引:22  
A relatively small group of hyperaccumulator plants is capable of sequestering heavy metals in their shoot tissues at high concentrations. In recent years, major scientific progress has been made in understanding the physiological mechanisms of metal uptake and transport in these plants. However, relatively little is known about the molecular bases of hyperaccumulation. In this paper, current progresses on understanding cellular/molecular mechanisms of metal tolerance/hyperaccumulation by plants are reviewed. The major processes involved in hyperaccumulation of trace metals from the soil to the shoots by hyperaccumulators include: (a) bioactivation of metals in the rhizosphere through root–microbe interaction; (b) enhanced uptake by metal transporters in the plasma membranes; (c) detoxification of metals by distributing to the apoplasts like binding to cell walls and chelation of metals in the cytoplasm with various ligands, such as phytochelatins, metallothioneins, metal-binding proteins; (d) sequestration of metals into the vacuole by tonoplast-located transporters. The growing application of molecular-genetic technologies led to the well understanding of mechanisms of heavy metal tolerance/accumulation in plants, and subsequently many transgenic plants with increased resistance and uptake of heavy metals were developed for the purpose of phytoremediation. Once the rate-limiting steps for uptake, translocation, and detoxification of metals in hyperaccumulating plants are identified, more informed construction of transgenic plants would result in improved applicability of the phytoremediation technology.  相似文献   
89.
Untreated industrial wastewater (IWW) creates a number of problems in ecosystem. This study highlights the possibility of using IWW for forest irrigation. Five tree species were selected for this study, Albizia lebbeck, Bauhinia purpurea, Dalbergia sissoo, Millettia peguensis, and Pongamia pinnata, and these species were grown in pots and were irrigated with different concentrations of IWW, rich in heavy metals. All the species showed positive results for fresh weight, plant height, and stem diameter. The maximum proline content was observed in B. purpurea (6.33), whereas the least quantity was observed in P. pinnata (3.89). Lead uptake (163.801?mg/day) by B. purpurea was promising. Uptake of Cr and Cu was slow in all species. Translocation factor of D. sissoo was maximum, that is 3.37. This study successfully combats wastewater problem. These five species are much tolerant in IWW and can be successfully used for phytoextraction processes. The chromium accumulation in stem is as follows: D. sissoo?>?A. lebbeck?>?M. peguensis?>?P. pinnata?>?B. purpurea. Metal Bioaccumulation in leaf and root was less. The idea is to utilize IWW to generate urban forests (in eco-friendly and sustainable way), which can reduce multiple problems such as IWW toxicity and air pollution through urban forestry.  相似文献   
90.
Using soil bacteria to facilitate phytoremediation   总被引:4,自引:0,他引:4  
In the past twenty years or so, researchers have endeavored to utilize plants to facilitate the removal of both organic and inorganic contaminants from the environment, especially from soil. These phytoremediation approaches have come a long way in a short time. However, the majority of this work has been done under more controlled laboratory conditions and not in the field. As an adjunct to various phytoremediation strategies and as part of an effort to make this technology more efficacious, a number of scientists have begun to explore the possibility of using various soil bacteria together with plants. These bacteria include biodegradative bacteria, plant growth-promoting bacteria and bacteria that facilitate phytoremediation by other means. An overview of bacterially assisted phytoremediation is provided here for both organic and metallic contaminants, with the intent of providing some insight into how these bacteria aid phytoremediation so that future field studies might be facilitated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号