首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   72篇
  免费   3篇
  国内免费   9篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   4篇
  2018年   3篇
  2017年   2篇
  2016年   3篇
  2015年   1篇
  2014年   3篇
  2013年   2篇
  2012年   1篇
  2010年   2篇
  2009年   6篇
  2008年   4篇
  2007年   7篇
  2006年   5篇
  2005年   5篇
  2004年   8篇
  2003年   3篇
  2002年   2篇
  2001年   2篇
  2000年   4篇
  1999年   2篇
  1998年   4篇
  1996年   1篇
  1993年   1篇
  1984年   1篇
  1982年   3篇
  1981年   1篇
  1980年   1篇
排序方式: 共有84条查询结果,搜索用时 93 毫秒
81.
Heterogeneity in soil characteristics promotes and maintains coexistence between a diverse set of species. In forests, trees have species-specific impacts on soil abiotic characteristics and mixing of tree species is being promoted as a tool to ensure high levels of diversity and functioning. Yet, limited knowledge is available on the effect of tree species composition and spatial clustering on heterogeneity in soil characteristics. In this paper we derived heterogeneity of key characteristics of the leaf litterfall, the forest floor and the mineral topsoil (C, N and base cation concentration, C:N ratio and mass) in 53 plots of 7 different tree species compositions. We found that heterogeneity increased from the leaf litterfall, through the forest floor down to the mineral topsoil. Mixing tree species did not lead to an increased heterogeneity in the forest floor and topsoil compared to monocultures. However, we did find that mixed plots where conspecific trees stand in groups are more heterogeneous than plots where species are intimately mixed. Our results imply that heterogeneity in soil characteristics does not necessarily increase with tree diversity, but that within mixed stands the spatial organization of tree species should be considered in relation to the scale at which heterogeneity is desired.  相似文献   
82.
Forest clear-cutting followed by soil preparation means disturbance for soil microorganisms and disruption of N and C cycles. We measured fluxes of N2O and dissolved organic carbon (DOC) in upland soil (podzol) and adjacent peat within a clear-cut forest catchment. Both soil types behaved in a similar way, showing net uptake of N2O in the first year after the clear-cutting, and turning to net release in the second. The N2O flux dynamics were similar to those of N content in logging residues, as reported from a nearby site. As organic matter is used in the food web of the decomposers, we attempted to explain the dynamics of N2O uptake and release by measuring the concurrent dynamics of the low molecular weight (LMW) fraction and the aromaticity of DOC in a soil solution. The labile and most readily available LMW fractions of DOC were nearly absent in the year following the clear-cutting, but rose after two years. The more refractory high molecular weight (HMW) fraction of DOC decreased two years after the clear-cutting. The first year’s net uptake of N2O could be accounted for by the growth of decomposer biomass in the logging residues and detritus from the degenerating ground vegetation, resulting in immobilization of nitrogen. Simultaneously, the labile, LMW fraction of DOC became almost completely exhausted. The low availability of the LMW fraction could retard the growth and cause the accumulated decomposer biomass to collapse. During the following winter and summer the fraction of LMW clearly increased, followed by increased N2O emissions. The presence of LMW DOC fractions, not the concentration of DOC, seems to be an important controller for N2O liberation after a major disturbance such as clear-cutting and site preparation. The complex connection between DOC characteristics, nitrification or denitrification merits further studies.  相似文献   
83.
Dothistroma needle blight (DNB) is a disease caused by two fungi, Dothistroma septosporum and Dothistroma pini, that has resulted in significant damage to pine forests worldwide. Analysis of 1194 British Dothistroma isolates revealed that only D. septosporum occurred in Britain; D. pini was not detected. The genetic diversity, population structure, and reproductive mode of D. septosporum in Britain were investigated using species-specific mating type markers and eleven microsatellite markers, revealing 382 multilocus haplotypes. Comparison of clustering methods (STRUCTURE, BAPS, DAPC) as well as spatial principal component analysis (sPCA) showed some differences between the methods but similar groupings. A clear north-south cline was found with attributes consistent with a native fungus. Other groups were most probably introduced, with one nearly exclusive lodgepole pine group exhibiting links with Canada. Evidence for the movement of specific multilocus haplotypes via nursery stock as well as across borders is provided and the implications discussed.  相似文献   
84.
Abstract. Since the introduction of ‘potential natural vegetation’ (PNV) as a concept in vegetation science by Tüxen (1956), many PNV-maps with different scales have been made. Tüxen emphasized the great value of PNV-maps for different purposes in land use, landscape planning and nature conservation, in particular with regard to forestry, agriculture and landscape management. Different aspects are discussed in order to examine the validity and applicability of PNV-maps in landscape planning and nature conservation. PNV-maps are useful for the differentiation of natural and landscape units on a small scale (< 1 : 100 000). However, maps of the potential natural vegetation are less useful for purposes of detailed planning on larger scales (> 1 : 100 000). Problems arise, for example, from the often highly hypothetical character of the construction and the practice of taking remnants of ‘natural’ vegetation as a reference object for the PNV. With regard to the goals of modern landscape planning and nature conservation purposes (e.g. conserving biodiversity in the cultural landscape of Central Europe) the exact documentation of the actual real vegetation (ARV) on intermediate and large scales gives much more detailed information than a hypothetical PNV.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号